We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Near Real-Time Osteoporosis and Bone Cancer Test Developed

By LabMedica International staff writers
Posted on 30 Aug 2015
Print article
Image: Photomicrograph demonstrating typical multiple myeloma histology, with monoclonal proliferation of plasma cells (Photo courtesy of Ohio State University College of Medicine).
Image: Photomicrograph demonstrating typical multiple myeloma histology, with monoclonal proliferation of plasma cells (Photo courtesy of Ohio State University College of Medicine).
A new test which measures changes in calcium isotope ratios offers the possibility of near real time monitoring of bone diseases, such as osteoporosis and multiple myeloma.

Bones are largely built of calcium, and the turnover of calcium can indicate the development of bone diseases such as osteoporosis and the cancer multiple myeloma and using techniques developed by geochemists it was found possible to apply them to a new, rapid test of bone health.

Scientists at Arizona State University (Tempe, AZ, USA) worked with the US National Aeronautics and Space Administration (NASA, Washington DC, USA) and measured calcium isotope ratios in urine from 30 shuttle astronauts, before, during, and after the flights. This allowed them to confirm that the test worked at high sensitivity. They also looked at a group of 71 patients who either had multiple myeloma (bone cancer), or were at risk of multiple myeloma.

The methodology used mass spectrometry and can discern the relative ratios of the calcium isotopes 42Ca and 44Ca in bone. The researchers found that lighter calcium isotopes, such as 42Ca, are absorbed from the blood into the bone during bone formation. Conversely, these light isotopes tend to be released into the bloodstream when bones break down. By measuring the ratios of the two isotopes in blood or urine scientists can calculate the rate of change of bone mass.

Ariel Anbar, PhD, the lead scientists of the study said, “What we saw with cancer patients was interesting. Those patients who tended to lose the lighter 42Ca isotope seemed to be the ones where the cancer was the most active. This means that the tests could theoretically feed into decisions on whether or not to treat a patient, for example if a cancer was dormant or growing very slowly, and to assess the effectiveness of treatments. The advantage for this methodology is that the patient doesn't have to come to the machine; the measurements can be done with a blood or urine test.”

Related Links:

Arizona State University
US National Aeronautics and Space Administration


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Molecular Diagnostics

view channel
Image: This medium is used to grow malaria parasites (Photo courtesy of Kyle Dykes/UC San Diego Health Sciences)

New Approach to Help Predict Drug Resistance in Malaria and Infectious Diseases

Malaria, a disease transmitted by mosquitoes that affects millions worldwide, remains a significant public health concern, especially in tropical and subtropical regions. Despite significant efforts to... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.