We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Cells Detected Before They Form Metastases

By LabMedica International staff writers
Posted on 06 Dec 2015
Print article
Image: A micrograph of the target cells (green) sticking to the microarray platform (red) (Photo courtesy of Dr. Michael Hirtz / KIT).
Image: A micrograph of the target cells (green) sticking to the microarray platform (red) (Photo courtesy of Dr. Michael Hirtz / KIT).
A versatile microarray-based platform has been developed that is able to capture single target cells from large background populations as analyses of rare events occurring at extremely low frequencies in body fluids are still challenging.

Single cancer cells migrate with blood flow through the body before they settle in new tissue and in this way, metastases may be formed, even after the main tumor was treated successfully. It is difficult to detect cancer cells in the blood at an early stage as about one malignant cell is encountered per billion of healthy cells.

Scientists at the Karlsruhe Institute of Technology (Germany) and their colleagues fabricated the device by means of polymer pen lithography, a surface is provided with a microscopically small structure using a plastic die. The target cells adhere to these structures. The blood sample to be investigated is injected into a flat microchannel that crosses the platform. As a maximum number of target cells are to contact the array, a fishbone-shaped structure at the top of the channel stirs up the passing liquid.

In order to underline the feasibility of the presented system in the clinical settings, a series of blood samples from nine breast and one colon cancer patient was analyzed. Samples from healthy individuals were used as negative controls. Prior to pumping the blood sample through the microfluidic device, circulating tumor cells (CTC’s) were pre-enriched by size filtration using the Parsortix System (ANGLE plc; Guilford, UK) using 4 mL of blood per patient mainly to extract red blood cells and to reduce the number of leukocytes. Cells larger than 10 μm in diameter were captured by the Parsortix system, harvested, and exposed to an antibody cocktail of biotinylated anti-EpCAM and anti-HER2 antibodies.

CTCs were discovered in six out of 10 blood samples using the micropattern platform with a range from 0.75 to 2 CTCs/mL. Four samples were deemed negative since both CellSearch (Janssen Diagnostics, LLC; South Raritan, NJ, USA) and the microarray approach were not able to find any CTCs. In three of the remaining six blood samples CellSearch found more CTCs than captured by the new system, range from 3.7to 7.6 CTCs/mL by CellSearch compared to 1.25 to 2 CTCs/mL by the micropattern platform. Two blood samples from patients were even tested positive by the novel device, whereas CellSearch was negative.

Michael Hirtz, ScD, a professor and senior author of the study said, “With our method, we reach a very high hit rate: more than 85% of the extracted cells really are cancer cells, In addition, we can sample suspicious cells undamaged and study them in more detail. While the tumor cells dock to the prepared locations according to the key-lock principle, the remaining cells are simply washed away.” The study was published on October 23, 2015, in the journal Scientific Reports.

Related Links:

Karlsruhe Institute of Technology 
ANGLE plc 
Janssen Diagnostics 


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: This medium is used to grow malaria parasites (Photo courtesy of Kyle Dykes/UC San Diego Health Sciences)

New Approach to Help Predict Drug Resistance in Malaria and Infectious Diseases

Malaria, a disease transmitted by mosquitoes that affects millions worldwide, remains a significant public health concern, especially in tropical and subtropical regions. Despite significant efforts to... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.