We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Culture of Cancer Cells Predicts Response to Therapy

By LabMedica International staff writers
Posted on 16 Dec 2015
Print article
Image: The Olympus Fluoview confocal microscope (Photo courtesy of National University of Singapore).
Image: The Olympus Fluoview confocal microscope (Photo courtesy of National University of Singapore).
Circulating tumor cells are considered as surrogate markers for prognosticating and evaluating patient treatment responses and a novel technique has been developed to efficiently culture clusters containing circulating tumor cells (CTCs) in 14 days.

These CTCs appear during the early stages of tumor progression as single cells or cell clusters and exhibit a partial or complete epithelial–mesenchymal transitioned phenotype and these cells may later colonize distant organs and develop into clinically detectable metastases.

A team of scientists led by those at the National University of Singapore (Singapore) obtained 226 blood samples from 92 breast cancer patients. Sixteen healthy volunteers were also recruited to provide control blood samples for validation of culture assay specificity. Whole blood was lysed with red blood cell (RBC) lysis buffer for three to five minutes with gentle mixing, centrifuged to remove plasma and lysed RBC fragments. Each processed 10 mL of whole blood sample was split into four and each 2.5 mL sample seeded into separate 60-mm patterned dishes.

Clusters of CTCs were characterized cultured in laser-ablated microwells and cell sorting was performed with spiral inertia microfluidic biochip. Immunophenotyping of cells was carried out using primary antibodies and fluorescence microscopy. Cytospots were viewed after Papanicolaou (PAP) staining and Diff-QUIK Romanowsky staining was performed. Imaging was performed with the Fluoview FV1000 confocal microscope (Olympus; Center Valley, PA, USA)  or epifluorescence microscopy (Nikon; Tokyo, Japan).

Clusters containing an increasing number of cytokeratin-positive (CK+) cells appeared after two weeks, while most blood cells disappeared with time. Cultures were heterogeneous and exhibited two distinct sub-populations of cells: “Small” (equal to or less than 25 μm; high nuclear/cytoplasmic ratio; CD45-) cells, comprising CTCs, and “Large” (greater than 25 μm; low nuclear/cytoplasmic ratio; CD68+ or CD56+) cells, corresponding to macrophage and natural killer-like cells. The small cell fraction also showed copy number increases in six target genes associated with breast cancer. The team achieved a success rate of greater than 60% in culturing CTCs from patients with metastatic breast cancer.

Lim Chwee Teck, PhD, a professor and one of the lead authors of the study said, “Being able to capture CTCs and grow them efficiently from a blood sample is a big step forward in liquid biopsy for tumor diagnosis and cancer treatment monitoring. This could potentially mean that biopsy for cancer diagnosis and prognosis could be done using a blood test, which is minimally invasive, instead of having to remove cells from the tumor itself (i.e., tumor biopsy).

Results of the blood tests could help doctors assess the best therapy options for a patient, and frequent blood tests can also be done during the course of an anticancer treatment to monitor a patient's progress during treatment.” The study was published originally online on May 6, 2015, in the journal Oncotarget.

Related Links:

National University of Singapore 
Olympus 
Nikon


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Rocking Shaker
HumaRock
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.