We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fibrin Network Changes in Neonates After Cardiopulmonary Bypass

By LabMedica International staff writers
Posted on 22 Mar 2016
Print article
Image: Laser scanning confocal microscopy of clots constructed from adult fibrinogen (A), neonatal fibrinogen (B), or a mixture of the two (C). Scale bar= 20 μm (Photo courtesy of North Carolina State University).
Image: Laser scanning confocal microscopy of clots constructed from adult fibrinogen (A), neonatal fibrinogen (B), or a mixture of the two (C). Scale bar= 20 μm (Photo courtesy of North Carolina State University).
Image: A transfusion bag of cryoprecipitate which contains about 350 mg of fibrinogen (Photo courtesy of Perfusion).
Image: A transfusion bag of cryoprecipitate which contains about 350 mg of fibrinogen (Photo courtesy of Perfusion).
Quantitative and qualitative differences in the hemostatic systems exist between neonates and adults, including the presence of “fetal” fibrinogen, a qualitatively dysfunctional form of fibrinogen that exists until one year of age.

The consequences of “fetal” fibrinogen on clot structure in neonates, particularly in the context of surgery-associated bleeding, have not been well characterized. The sequential changes in clotting components and resultant clot structure in a small sample of neonates undergoing cardiac surgery and cardiopulmonary bypass (CPB) have been examined.

Scientists at North Carolina State University (Raleigh, NC, USA) and their colleagues collected blood samples were from 10 neonates before surgery, immediately after CPB, and after the transfusion of cryoprecipitate, which was the adult fibrinogen component. Clots were formed from patient samples or purified neonatal and adult fibrinogen. Clot structure was analyzed using confocal microscopy.

Clots formed from plasma obtained after CPB and after transfusion were more porous than baseline clots. Analysis of clots formed from purified neonatal and adult fibrinogen demonstrated that at equivalent fibrinogen concentrations, neonatal clots lack three-dimensional structure, whereas adult clots were denser with significant three-dimensional structure. Clots formed from a combination of purified neonatal and adult fibrinogen were less homogenous than those formed from either purified adult or neonatal fibrinogen. The study also showed that clots of neonate fibrinogen dissolve about twice as quickly as clots formed from adult fibrinogen. It also showed that clots formed from an adult and neonate fibrinogen mixture dissolved at approximately the same rate as adult-only clots—regardless of the percentage of neonate fibrinogen in the mixture.

The authors concluded that significant differences exist in clot structure between neonates and adults and that neonatal and adult fibrinogen may not integrate well. These findings suggest that differential treatment strategies for neonates should be pursued to reduce the demonstrated morbidity of blood product transfusion. Nina Guzzetta, MD, an assistant professor and corresponding author of the study said, “This suggests that using adult fibrinogen in neonatal patients may pose an increased risk of embolism or other adverse thrombotic events. This work drives home that newborns are not just small adults, and we still have much to learn about clotting in neonates. It also tells us that there is a great deal of room for improvement in the current standard of care for postoperative bleeding in neonates.” The study was published in the February 2016 issue of the journal Anesthesiology.

Related Links:

North Carolina State University


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: This medium is used to grow malaria parasites (Photo courtesy of Kyle Dykes/UC San Diego Health Sciences)

New Approach to Help Predict Drug Resistance in Malaria and Infectious Diseases

Malaria, a disease transmitted by mosquitoes that affects millions worldwide, remains a significant public health concern, especially in tropical and subtropical regions. Despite significant efforts to... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.