We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Noncoding RNA Gene Linked to Malignant Melanoma

By LabMedica International staff writers
Posted on 05 Apr 2016
Print article
Image: Histopathology of a skin section from a patient with superficial spreading malignant melanoma (Photo courtesy of Profs. Leszek Wozniak and Krzysztof W. Zielinski).
Image: Histopathology of a skin section from a patient with superficial spreading malignant melanoma (Photo courtesy of Profs. Leszek Wozniak and Krzysztof W. Zielinski).
While a large share of the human genome has long been considered “junk DNA” because it does not contribute to protein coding, recent insights indicate that it does produce many noncoding ribonucleic acids (RNAs) that play important roles in essential biological processes and diseases.

A remarkable link has been found between malignant melanoma and a noncoding RNA gene called SAMMSON. The SAMMSON gene is expressed in human malignant melanoma and, strikingly, the growth of aggressive skin cancer is highly dependent on this gene. The conclusions could pave the way for improved diagnostic tools and skin cancer treatment.

A European group of scientists led by those at the VIB, the Flanders Institute for Biotechnology (Leuven, Belgium) have shown that show that the recently annotated long noncoding RNA (lncRNA) gene SAMMSON is consistently co-gained with Microphthalmia-Associated Transcription Factor (MITF) gene. Their results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.

The scientists discovered a remarkable dependency of melanoma cells on SAMMSON expression. When reducing the presence of SAMMSON in melanoma cultures, cancer cells rapidly and massively die off, irrespective of the type of melanoma. This led to the key conclusion of a “SAMMSON addiction.” As the SAMSSON gene is not expressed in benign melanoma, its occurrence could be a key factor in developing new diagnostic tools that may dramatically improve melanoma prognosis.

Pieter Mestdagh, PhD, from Ghent University (Belgium) and a senior coauthor of the study, said, “Our study showed that the long noncoding RNA gene SAMMSON is specifically expressed in human melanomas and duplicated or amplified in about 10% of the cases. In addition, SAMMSON was nowhere to be found in melanocytes, the normal melanin-producing cells, nor in any other normal adult tissue. This unique expression profile of SAMMSON led us to hypothesize that this gene might play an important role in the etiology of melanoma.” The study was published on March 23, 2016, in the journal Nature.

Related Links:

VIB the Flanders Institute for Biotechnology 
Ghent University 


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.