We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarkers Could Give Cancer Patients Better Survival Estimates

By LabMedica International staff writers
Posted on 21 Jun 2016
Print article
Image: A SURVIV analysis of breast cancer isoforms developed at UCLA. Blue lines are associated with longer survival times, and magenta lines with shorter survival times (Photo courtesy of Professor Yi Xing).
Image: A SURVIV analysis of breast cancer isoforms developed at UCLA. Blue lines are associated with longer survival times, and magenta lines with shorter survival times (Photo courtesy of Professor Yi Xing).
Cancer patients are often told by their doctors approximately how long they have to live, and how well they will respond to treatments, but there is a way to improve the accuracy of doctors' predictions.

A new method has been developed that could eventually lead to a way to do just that, using data about patients' genetic sequences to produce more reliable projections for survival time and how they might respond to possible treatments.

Scientists at the University of California-Los Angeles (UCLA, CA, USA) and their colleagues have developed a method that analyzes various gene isoforms using data from ribonucleic acid (RNA) molecules in cancer specimens. These isoforms are combinations of genetic sequences that can produce an enormous variety of RNAs and proteins from a single gene.

That process, called RNA sequencing, or RNA-seq, reveals the presence and quantity of RNA molecules in a biological sample. In the method developed, the scientists analyzed the ratios of slightly different genetic sequences within the isoforms, enabling them to detect important but subtle differences in the genetic sequences. In contrast, the conventional analysis aggregates all of the isoforms together, meaning that the technique misses important differences within the isoforms.

The scientists studied tissues from 2,684 people with cancer whose samples were part of the National Institutes of Health's Cancer Genome Atlas, and they spent more than two years developing the algorithm for SURVIV (for "survival analysis of mRNA isoform variation"). The team has identified some 200 isoforms that are associated with survival time for people with breast cancer; some predict longer survival times, others are linked to shorter times. Armed with that knowledge, the scientists might eventually be able to target the isoforms associated with shorter survival times in order to suppress them and fight disease. They evaluated the performance of survival predictors using a metric called C-index and found that across the six different types of cancer they analyzed, their isoform-based predictions performed consistently better than the conventional gene-based predictions.

Yi Xing, PhD, an assistant professor and senior author of the study, said, “Our finding suggests that isoform ratios provide a more robust molecular signature of cancer patients in large-scale RNA-seq datasets. In cancer, sometimes a single gene produces two isoforms, one of which promotes metastasis and one of which represses metastasis.” The study was published on June 9, 2016, in the journal Nature Communications.

Related Links:
University of California-Los Angeles

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.