We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Parkinson's Disease Risk Indicators Found in Diverse Tissues

By LabMedica International staff writers
Posted on 18 Aug 2016
Print article
Image: Different colored dots represent the status of micro RNA in the blood. Researchers looked for similarities among blood samples from Parkinson\'s patients (Photo courtesy of Van Andel Research Institute).
Image: Different colored dots represent the status of micro RNA in the blood. Researchers looked for similarities among blood samples from Parkinson\'s patients (Photo courtesy of Van Andel Research Institute).
Tiny changes in DNA that have been linked to Parkinson's disease, the second most common neurodegenerative disorder after Alzheimer's, were found not only in brain cells, where they were expected, but also in liver, fat, immune and developmental cells.

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 1% of those over the age of 60 and classically, PD was considered a movement disorder with akinesia, rigidity, tremor and postural instability as the predominant motor features.

Scientists at the Van Andel Research Institute (Grand Rapids, MI, USA) and their collaborators investigated single-nucleotide polymorphisms SNPS) which were integrated with comprehensive data from the Roadmap Epigenomics Mapping Consortium (REMC) for 77 tissues and cell types and 1000 genomes using FunciSNP software.

The team found 12 loci across several tissue types that were particularly enriched or full of SNPS indicating an increase in risk. Only one locus was identified in the substantia nigra, the part of the brain where dopamine-producing neurons die. Other loci were found in liver, fat, immune and developmental cells. It is the first time this type of genome-wide analysis has been used to investigate Parkinson's disease.

Although much more work must be done to unravel exactly how these loci affect risk, there are interesting parallels between the team's findings and recent work done by others investigating Parkinson's. For example, three of the risk loci were found in immune cells, a promising finding as evidence suggests that Parkinson's may be linked to inflammation, the immune system's reaction to help fight off potential threats.

Patrik Brundin, MD, PhD, director of Center for Neurodegenerative Science and one of the study's authors, said, “Only a small percentage of Parkinson's cases are familial and have a clear and well-defined genetic inheritance. The remaining cases develop the disease seemingly at random. The emerging view is that Parkinson's is more of a syndrome, as a defined set of clinical symptoms and some shared features of brain pathology, with a diverse set of underlying causes. One surprising finding in our study is that only one gene locus was clearly linked to the brain while others were associated with tissues throughout the body. This supports the emerging theory that Parkinson's is a disorder that can be caused by disruptions in cellular processes in many locations, not just one. Furthermore, for the disease to develop in one person there has to be an unfortunate combination of a genetic predisposition and, as yet undefined, environmental insults.” The study was published on July 27, 2016, in the journal Scientific Reports.

Related Links:
Van Andel Research Institute

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.