We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microcantilever-Based Sensor Detects BRAF-Mutated Malignant Melanoma

By LabMedica International staff writers
Posted on 19 Sep 2016
Print article
Image: The cantilever on the left bears the recognition sequence for the target mutation. If this is present in the sample being tested, the corresponding segment of RNA binds to the cantilever, causing the latter to bend. This can be measured, providing clear evidence that the genetic change is present (Photo courtesy of the University of Basel, Department of Physics).
Image: The cantilever on the left bears the recognition sequence for the target mutation. If this is present in the sample being tested, the corresponding segment of RNA binds to the cantilever, causing the latter to bend. This can be measured, providing clear evidence that the genetic change is present (Photo courtesy of the University of Basel, Department of Physics).
A novel nanosenor comprising minute cantilevers labeled with malignant melanoma-derived RNA enabled identification of patients with the BRAFV600E mutated form of the disease in less than 24 hours.

In the United States there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung, and colon each year, and malignant melanoma represents its deadliest form. About 50% of all cases of malignant melanoma are characterized by a particular mutation - BRAFV600E - in the BRAF (rapid acceleration of fibrosarcoma gene B) gene. Recently developed highly specific drugs are available to treat BRAFV600E mutated tumors but require diagnostic tools for fast and reliable mutation detection to promote successful treatment.

Investigators at the University of Basel (Switzerland) and the University Hospital Basel (Switzerland) labeled nanomechanical microcantilevers with RNA from BRAFV600E mutated malignant melanoma cells.

They conducted a preliminary clinical trial in which they used RNA-labeled cantilever array sensors to demonstrate identification of a BRAFV600E single-point mutation by sampling total RNA obtained from biopsies of metastatic melanoma of diverse sources (surgical material either frozen or fixated with formalin and embedded in paraffin).

Results revealed that the method was faster than the standard Sanger or pyrosequencing methods and was comparably sensitive as next-generation sequencing. Processing time from biopsy to diagnosis took less than 24 hours and did not require PCR amplification, sequencing, and labels.

"It is essential that we are able to identify the mutations reliably in tissue samples. That is the only way of ensuring that patients get the right treatment and successful outcomes," said contributing author, Dr. Katharina Glatz professor of pathology at University Hospital Basel.

The nanosensor was described in the August 4, 2016, online edition of the journal Nano Letters.

Related Links:
University of Basel
University Hospital Basel
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.