We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Method Developed Predicts Disease Activity in Multiple Sclerosis

By LabMedica International staff writers
Posted on 28 Sep 2016
Print article
Image: The C Scanner high-resolution microarray scanner (Photo courtesy of Agilent Technologies).
Image: The C Scanner high-resolution microarray scanner (Photo courtesy of Agilent Technologies).
Multiple sclerosis, or MS, is an inflammatory disease of the central nervous system that mainly affects young adults and it is not currently possible to know which individuals with multiple sclerosis, a life-long condition, risk developing severe disease.

Biomarkers are naturally occurring substances in the body that can be measured in, for example, blood and that mirror a condition in the body and they are used in medical care to follow the progression of a disease and measure the effect of a treatment.

Scientists at the Linköping University (Sweden) isolated CD4+ T cells were isolated from 16 women diagnosed with definite relapsing-remitting MS. None of the patients had experienced a relapse within three months prior to blood sampling nor had received immunomodulatory or immunosuppressive treatment for at least two months (one exception was intravenous immunoglobulin treatment given 15 days before treatment in one patient). 16 age-matched, healthy control women were recruited among blood donors. To validate the clinical classifying capacity at the protein level, plasma and cerebrospinal fluid (CSF) from a second cohort of 41 patients with early MS was used.

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood by density centrifugation (Lymphoprep, Axis-Shield, Oslo, Norway). The scientists used a variety of techniques including cell culture, flow cytometry staining and analysis, ribonucleic acid (RNA) extraction and microarray analysis, and these arrays were scanned on an Agilent Microarray Scanner (Agilent Technologies, Santa Clara, CA, USA). Cytokines and chemokines were also quantified.

The scientists tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating their findings with genome-wide association studies, they constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in CSF and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after two years and distinguish low and high responders to treatment in two additional, independent cohorts.

Mika Gustafsson, PhD, a bioinformatics specialist who co-led the study, said, “We have been able to study in detail changes in the immune cells of patients, and been able to identify important proteins. This has led us to a biomarker that can predict how the disease will progress in the patient.” The study was published on September 13, 2016, in the journal Cell Reports.

Related Links:
Linköping University
Axis-Shield
Agilent Technologies
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.