We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Signature Identified for Aggressive Brain Tumor

By LabMedica International staff writers
Posted on 23 Nov 2016
Print article
Image: A histopathology of rhabdoid meningiomas characterized by enlarged epithelioid cells with large nuclei and prominent nucleoli. Bright intracellular secretions (black arrows) are present. Note that the sizes of these vacuoles are several times the size of the nuclei. Intranuclear pseudoinclusions are also present (white arrows) (Photo courtesy of Kar-Ming Fung, MD, PhD).
Image: A histopathology of rhabdoid meningiomas characterized by enlarged epithelioid cells with large nuclei and prominent nucleoli. Bright intracellular secretions (black arrows) are present. Note that the sizes of these vacuoles are several times the size of the nuclei. Intranuclear pseudoinclusions are also present (white arrows) (Photo courtesy of Kar-Ming Fung, MD, PhD).
Meningiomas are the most common primary brain tumors, but the term encompasses over a dozen subtypes that range from benign to highly aggressive. Rhabdoid meningiomas are classified as highly aggressive due to their high rates of recurrence and mortality, but the experience and outcomes for patients with this rare form of brain tumor vary widely.

A routine test can be used to identify which patients may require intensive clinical management and surveillance for aggressive brain tumors as genetic mutations have been identified in this form of brain cancer that can distinguish aggressive rhabdoid meningiomas from more benign forms using routine laboratory tests. The new findings could have immediate implications for clinical decision-making.

A large team of scientists in collaboration with Brigham and Women's Hospital (Boston, MA, USA) defined genomic aberrations of rhabdoid meningiomas, by performed sequencing of cancer-related genes in 27 meningiomas from 18 patients with rhabdoid features and evaluated breast cancer [BRCA]1–associated protein 1 (BAP1) expression by immunohistochemistry in 336 meningiomas. They assessed outcomes, germline status, and family history in patients with BAP1-negative rhabdoid meningiomas.

The team went on to analyze samples from 47 patients with rhabdoid meningiomas as well as 265 additional meningiomas of diverse subtypes and grades. None of the non-rhabdoid meningiomas had a loss of BAP1. However, five of the 47 patients with rhabdoid meningiomas did have mutations or deletions affecting BAP1. These patients had poor clinical outcomes: two died of the disease and two had multiple cases of recurrence; clinical follow-up information was not available for the fifth. For those patients with intact BAP1, average time of disease progression was 116 months; for the patients with BAP1 mutations, it was only 26 months.

Sandro Santagata, MD, PhD, a pathologist and a senior author of the study, said, “Testing for BAP1 in rhabdoid meningiomas could be performed routinely and at a low cost, with the potential to change the course of clinical care and avoid overtreatment or to identify those who may need more aggressive therapy. We hope that this new work will offer insights for clinicians and patients alike as they seek more information on these tumors.” The study was published on November 10, 2016, in the journal Neuro-Oncology.

Related Links:
Brigham and Women's Hospital

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.