We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Diagnostic Tool Designed for Familial Mediterranean Fever

By LabMedica International staff writers
Posted on 08 Dec 2016
Print article
Image: The LSM 780 laser scanning confocal microscope (Photo courtesy of Zeiss).
Image: The LSM 780 laser scanning confocal microscope (Photo courtesy of Zeiss).
A tool has been developed to diagnose Familial Mediterranean Fever (FMF) which is particularly common among populations originating from around Mediterranean Sea and this genetic disease is characterized by inflammation, fever and severe pain.

FMF is usually diagnosed during childhood, after which a daily, lifelong treatment is necessary. However, accurate diagnosis is complicated by a number of factors: other auto-inflammatory diseases show similar symptoms, the clinical picture is often incomplete in young children, atypical signs may occur, and a suggestive family history is sometimes lacking. Wrong or late diagnosis often even leads to unnecessary surgery and, ultimately, kidney failure.

A large group of scientists led by those at the Inflammation Research Center, VIB, Zwijnaarde, Belgium) developed an alternative for today's inadequate diagnosis, efficiently segregating FMF patients from people suffering from other auto-inflammatory diseases and healthy individuals. The tool detects changes in the body's immune reaction to pyrin, a protein that is usually mutated in FMF. Following successful tests on mice, the tool has been validated in 13 patients in collaboration with physicians from Belgium and Italy.

The team used many different techniques during the study that included identification of FMF disease gene variants using genomic DNA, Transfection, Immunoprecipitation, the eluted samples were analyzed by SDS/PAGE, Western Blotting, Cytokine Analysis, Microarray Data Analysis, and Confocal Microscopy that was performed on a Zeiss LSM 780 confocal microscope (Zeiss, Jena, Germany) equipped with a Ti:Sa laser (Mai Tai DeepSee multiphoton laser; Spectra-Physics, Santa Clara, CA, USA), an Ar laser, and two diode lasers (561 nm and 633 nm).

The scientists established Clostridium difficile and its enterotoxin A (TcdA) as Pyrin-activating agents and show that wild-type and FMF Pyrin are differentially controlled by microtubules. Diverse microtubule assembly inhibitors prevented Pyrin-mediated caspase-1 activation and secretion of IL-1β and IL-18 from mouse macrophages and human peripheral blood mononuclear cells (PBMCs). Remarkably, Pyrin inflammasome activation persisted upon microtubule disassembly in PBMCs of FMF patients but not in cells of patients afflicted with other auto-inflammatory diseases. The team further demonstrated that microtubules control Pyrin activation downstream of Pyrin dephosphorylation and those FMF mutations enable microtubule-independent assembly of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) micrometer-sized perinuclear structures.

Mohamed Lamkanfi, PhD, a professor and a senior author of the study said, “As next steps, we are setting up clinical trials in Belgium for which we are actively seeking volunteers; both FMF patients and people suffering from related inflammatory disorders. We are also exploring possible collaborations with industrial partners in order to make our method available as a diagnostic kit.” The study was published on November 22, 2016, in the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
Inflammation Research Center
Zeiss
Spectra-Physics
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
PSA Test
Human Semen Rapid Test
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.