We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetic Test Predicts Success of Bone-Marrow Transplant

By LabMedica International staff writers
Posted on 02 Mar 2017
Print article
Image: Bone marrow aspirate smear from a patient with myelodysplastic syndrome showing two megakaryocytes with hypolobated, rounded nuclei are present (Photo courtesy of International Agency for Research on Cancer).
Image: Bone marrow aspirate smear from a patient with myelodysplastic syndrome showing two megakaryocytes with hypolobated, rounded nuclei are present (Photo courtesy of International Agency for Research on Cancer).
Genetic mutations drive the pathogenesis of the myelodysplastic syndrome (MDS) and are closely associated with clinical phenotype and therefore, genetic mutations may predict clinical outcomes after allogeneic hematopoietic stem-cell transplantation.

MDS is a blood disorder in which the bone marrow does not produce enough healthy blood cells. Typical treatments include high- or low-intensity 'conditioning' therapy, such as radiotherapy or chemotherapy, and donor stem cell transplants for patients with high risk of mortality. However, many patients can experience relapse or severe complications.

A large team of scientists collaborating with those at the Dana-Farber Cancer Institute analyzed blood cells from over 1,500 MDS patients, combined with clinical information such as age and disease status. They were able to devise a genetic profile of mutations associated with poorer patient outcomes after transplantation. They performed targeted mutational analysis on samples obtained before transplantation and evaluated the association of mutations with transplantation outcomes, including overall survival, relapse, and death without relapse.

The scientists found that the most important predictor of patient prognosis was a mutation in the tumor protein p53 (TP53) gene. These patients tended to relapse sooner and survive for a shorter time after transplant. Whether patients had high- or low-intensity conditioning therapy before the transplant did not affect the outcome. Specific mutations in other genes were also linked to poorer outcomes in older patients, although only when they received low-intensity conditioning therapy. The investigators suggested that these patients may benefit from high-intensity conditioning therapy to reduce the risk.

In young adults, one in 25 patients with MDS were found to have mutations associated with the rare, inherited Shwachman-Diamond syndrome, which affects the bone marrow, pancreas and skeletal system. Most of these patients were previously undiagnosed. The team found that each of these patients had acquired a TP53 mutation, indicating how MDS develops in these patients and giving insight into their poor prognosis.

Robert Coleman Lindsley, MD, PhD, the lead author of the study, said, “'In deciding whether a stem-cell transplant is appropriate for a patient with MDS, it's always necessary to balance the potential benefit with the risk of complications. Our findings offer physicians a guide, based on the genetic profile of the disease and certain clinical factors, to identifying patients for whom a transplant is appropriate, and the intensity of treatment most likely to be effective.” The study was published on February 9, 2017, in The New England Journal of Medicine.

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.