Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Confocal Fluorescence Microscopy Used for Rapid Tissue Evaluation

By LabMedica International staff writers
Posted on 16 Apr 2018
Optical imaging techniques are currently available for imaging tissues without the need for any type of extensive tissue preparation. There are several applications for their potential use in surgical pathology practice.

Unlike in vivo optical imaging, ex vivo optical imaging is not yet routinely used in clinical practice, although several optical imaging modalities are available for ex vivo tissue examination. These techniques include full-field optical coherence tomography, confocal fluorescence microscopy (CFM), and multiphoton microscopy.

Pathology specialists at the University of Texas MD Anderson Cancer Center (Houston, TX, USA) evaluated the feasibility of using a confocal fluorescence microscopy (CFM) platform for ex vivo examination of tissues obtained from surgical resections of breast, lung, kidney, and liver. The team collected fragments of fresh tissue from normal as well as areas of tumor from a total of 55 surgical resections that were performed for malignant tumors of the breast, liver, lung, and kidney soon after completion of immediate intraoperative assessment of the surgical specimen.

The tissue fragments (0.5–1.0 cm) were immersed in 0.6 mM acridine orange for six seconds and imaged using a CFM platform at a 488-nm wavelength. The CFM images of the specimen were obtained using a confocal scanning microscope designed specifically for ex vivo imaging of fresh biologic tissue specimens. The imaged tissues were subsequently fixed in formalin and processed routinely to generate hematoxylin-eosin–stained tissue sections. Mosaics of the grayscale CFM images were studied at different magnifications for recognition of the tissue and were compared with conventional histopathologic examination of hematoxylin-eosin tissue sections.

The scientists imaged 55 tissue fragments obtained from 16 breast (29%), 18 lung (33%), 14 kidney (25%), and seven liver (13%) surgical excision specimens. Acridine orange labeled the nuclei, creating the contrast between nucleus and cytoplasm and thereby recapitulating the tissue architecture. They obtained CFM images of good quality within 5 to 10 minutes that allowed recognition of the cytomorphologic details for categorization of the imaged tissue and were similar to histologic examination of hematoxylin-eosin tissue sections.

The authors concluded that the relative ease and speed of grayscale image acquisition together with the quality of images that were obtained with the CFM platform used in their study suggest that this technique has promise for use in surgical pathology practice. The CFM images are similar to H&E images and the use of this CFM technique for possible applications in surgical pathology, such as rapid evaluation of specimen adequacy of core needle biopsy at the time of procurement, margin evaluation of surgical resection specimens, and quality assurance of the tissues for biobanking, needs serious consideration. The study was published in the March 2018 issue of the journal Archives Of Pathology & Laboratory Medicine.

Related Links:
University of Texas MD Anderson Cancer Center


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Uric Acid and Blood Glucose Meter
URIT-10
New
TETANUS Test
TETANUS VIRCLIA IgG MONOTEST
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.