We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tissue-Imaging Technology Enables Real-Time Diagnostics

By LabMedica International staff writers
Posted on 04 Jul 2018
Print article
Image: A tissue-imaging microscope has been developed that can image living tissue in real time and molecular detail, allowing them to monitor tumors and their environments as cancer progresses (Photo courtesy of Professor Stephen Boppart).
Image: A tissue-imaging microscope has been developed that can image living tissue in real time and molecular detail, allowing them to monitor tumors and their environments as cancer progresses (Photo courtesy of Professor Stephen Boppart).
A new microscope system can image living tissue in real time and in molecular detail, without any chemicals or dyes. The system is called simultaneous label-free autofluorescence multi-harmonic microscopy (SLAM).

The system uses precisely tailored pulses of light to simultaneously image with multiple wavelengths. This enables scientists to study concurrent processes within cells and tissue, and could give those studying cancer a new tool for tracking tumor progression and physicians new technology for tissue pathology and diagnostics.

Scientists at the University of Illinois at Urbana-Champaign, Urbana, IL, USA) designed an optical imaging platform that performs simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, featuring fast epi-detection of nicotinamide adenine dinucleotide (NADH) from three-photon autofluorescence (3PAF) and simultaneous, and efficient acquisition of autofluorescence (FAD) from two-photon autofluorescence (2PAF), combined with non-centrosymmetric structures from second-harmonic generation (SHG) and interfacial features from third-harmonic generation (THG).

The team saw that the cells near the mammary tumors in rats had differences in metabolism and morphology, indicating that the cells had been recruited by the cancer. In addition, they observed surrounding tissues creating infrastructure to support the tumor, such as collagen and blood vessels. They also saw communication between the tumor cells and the surrounding cells in the form of vesicles, tiny transport packages released by cells and absorbed by other cells. The authors concluded that they had demonstrated the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and are a major enabling advance in label-free intravital microscopy (IVM).

Stephen A. Boppart, MD, PhD, a professor and head of the Biophotonics Imaging Laboratory, and senior author of the study, said, “With advances in microscopy techniques such as ours, we hope to change the way we detect, visualize and monitor diseases that will lead to better diagnosis, treatments and outcomes.” The study was published on May 29, 2018, in the journal Nature Communications.

Related Links:
University of Illinois at Urbana-Champaign

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.