We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CTC Purification Enables Identification of Cancer-Linked Genetic Arrangements

By LabMedica International staff writers
Posted on 29 Aug 2019
Print article
Image: A diagram illustrating the combined use of bioorthogonal ligation (i.e., the reaction between Tz and TCO) and disulfide cleavage–driven by DTT to enable capture and release of CTCs using Click Chips (Photo courtesy of University of California, Los Angeles).
Image: A diagram illustrating the combined use of bioorthogonal ligation (i.e., the reaction between Tz and TCO) and disulfide cleavage–driven by DTT to enable capture and release of CTCs using Click Chips (Photo courtesy of University of California, Los Angeles).
The use of circulating tumor cells (CTCs) as a surrogate tumor source for molecular profiling of disease offers a potential noninvasive diagnostic solution for understanding underlying tumor biology, guiding treatment interventions, and monitoring disease progression.

CTCs are cells that have shed into the vasculature or lymphatics from a primary tumor and are carried around the body in the blood circulation. Unlike circulating tumor DNA or RNA, which are highly fragmented and compounded by substantial background, CTCs house intact genomic DNA and RNA, providing more genetic information about the tumors from which they originate.

An international team of scientists collaborating with the University of California, Los Angeles (Los Angeles, CA, USA) developed a method combining antibody-based circulating tumor cell (CTC) capture and disulfide cleavage-driven CTC release to efficiently and rapidly purify the cells for downstream molecular analysis. The team demonstrated a covalent chemistry–based nanostructured silicon substrate (“Click Chip”) for CTC purification that leverages bioorthogonal ligation–mediated CTC capture and disulfide cleavage–driven CTC release.

The team designed the custom microfluidic chip that integrates tetrazine antibody (Tz)-grafted silicon nanowire substrates with a network of microchannels modified to induce chaotic mixing. In order to perform biorthogonal ligation-mediated CTC capture, they grafted trans-cyclooctene (TCO) modified capture antibodies to the CTCs in a blood sample. When a blood sample runs through the chip, the Tz and TCO react and instantly snag the CTCs. This they likened TCO and Tz to the male and female parts of a seatbelt, respectively, that "click" together.

The group then tested the ability to detect and quantify ALK and ROS1 oncogenic gene rearrangements in CTCs isolated from patients with non-small-cell lung carcinoma (NSCLC) using Click Chip. They collected blood samples from 12 NSCLC patients before and after crizotinib cancer drug therapy, as well as samples from six healthy controls. Seven of the NSCLC patients had ALK rearrangements and five had ROS1 rearrangements.

The team used two tubes of 2-ml blood samples from each patient to perform CTC capture, immunostaining, CTC enumeration, and CTC purification in the Click Chip, followed by reverse transcriptase (RT) Droplet Digital PCR analysis to detect and quantify the copy number of rearranged ALK or ROS1 transcripts. They found that each NSCLC patient had anywhere from 0 to 36 CTCs in their blood samples. They also detected positive ALK or ROS1 rearrangements in all 12 patients, which was consistent with tissue biopsies collected at initial diagnosis.

Hsian-Rong Tseng, PhD, a professor and co-author of the study, said, “With the improved rare-cell purification performance observed for Click Chips, it is conceivable that the devices can be adopted for purification of rare circulating fetal nucleated cells, such as circulating trophoblasts for downstream single-cell whole genome profiling, paving the way for implementation of Non-Invasive Prenatal Testing.” The study was published on July 31, 2019, in the journal Science Advances.

Related Links:
University of California, Los Angeles

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.