We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




All-Digital Histopathology Attained by Infrared-Optical Hybrid Microscopy

By LabMedica International staff writers
Posted on 24 Feb 2020
Print article
Image: This side-by-side comparison of a breast tissue biopsy demonstrates some of the infrared-optical hybrid microscope’s capabilities. On the left, a tissue sample dyed by traditional methods. Center, a computed stain created from infrared-optical hybrid imaging. Right, tissue types identified with infrared data. The pink in this image signifies malignant cancer (Photo courtesy of Rohit Bhargava, PhD).
Image: This side-by-side comparison of a breast tissue biopsy demonstrates some of the infrared-optical hybrid microscope’s capabilities. On the left, a tissue sample dyed by traditional methods. Center, a computed stain created from infrared-optical hybrid imaging. Right, tissue types identified with infrared data. The pink in this image signifies malignant cancer (Photo courtesy of Rohit Bhargava, PhD).
The gold standard of tissue pathology is to add dyes or stains so that pathologists can see the shapes and patterns of the cells under a microscope. However, it can be difficult to distinguish cancer from healthy tissue or to pinpoint the boundaries of a tumor, and in many cases diagnosis is subjective.

Optical microscopy for biomedical samples requires expertise in histological staining to visualize structure and composition. Mid-infrared (mid-IR) spectroscopic imaging offers label-free molecular recording and virtual staining by probing fundamental vibrational modes of molecular components.

Bioengineers at the University of Illinois at Urbana–Champaign (Urbana, IL, USA) and their colleagues developed a hybrid microscope by adding an infrared laser and a specialized microscope lens, called an interference objective, to an optical camera. The infrared-optical hybrid measures both infrared data and a high-resolution optical image with a light microscope, the kind ubiquitous in clinics and laboratories.

The team combined the two techniques which harnesses the strengths of both. It has the high resolution, large field-of-view and accessibility of an optical microscope. Furthermore, infrared data can be analyzed computationally, without adding any dyes or stains that can damage tissues. Software can recreate different stains or even overlap them to create a more complete, all-digital picture of what is in the tissue.

The scientists verified their microscope by imaging breast tissue samples, both healthy and cancerous, and comparing the results of the hybrid microscope's computed "dyes" with those from the traditional staining technique. The digital biopsy closely correlated with the traditional one. Furthermore, they found that their infrared-optical hybrid outperformed state-of-the-art in infrared microscopes in several ways. It has 10 times larger coverage, greater consistency and four times higher resolution, allowing infrared imaging of larger samples, in less time, with unprecedented detail.

Rohit Bhargava, PhD, a Professor of Bioengineering and senior author of the study, said, “The advantage is that no stains are required, and both the organization of cells and their chemistry can be measured. Measuring the chemistry of tumor cells and their microenvironment can lead to better cancer diagnoses and better understanding of the disease.”

The authors concluded that infrared-optical hybrid (IR-OH) is compatible with clinical pathology practice and could make for a cost-effective alternative to conventional stain-based protocols for stainless, all-digital pathology. The study was published on February 3, 2020 in the Proceedings of the National Academy of Sciences.

Related Links:
University of Illinois at Urbana – Champaign

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.