We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Shows Promise for Predicting Cancer

By LabMedica International staff writers
Posted on 14 May 2020
Print article
Image: Schematic diagram of circulating tumor DNA (ctDNA) which is found in serum and plasma fractions from blood. The mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized. Once ctDNA is isolated, it can be sequenced for mutational analysis (Photo courtesy of Rachel June Wong).
Image: Schematic diagram of circulating tumor DNA (ctDNA) which is found in serum and plasma fractions from blood. The mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized. Once ctDNA is isolated, it can be sequenced for mutational analysis (Photo courtesy of Rachel June Wong).
Early detection of most cancers is an elusive and daunting task; nevertheless, it has remained a top priority for the cancer research community. Detecting cancer early has manifold advantages: it can increase a patient’s chances of successful treatment, prolong their survival, and substantially improve their quality of life.

Developing a blood-based test that is sensitive and specific enough to ensure an accurate diagnosis of cancer before it manifests clinically has many challenges. Liquid biopsy-based tests often utilize analysis of circulating tumor DNA (ctDNA), DNA from cancer cells circulating in the blood, to look for the presence of DNA alterations in the cancer cells.

A team of scientists from the Mayo Clinic (Jacksonville, Florida) and their colleagues developed a multicancer detection test through a prospective, longitudinal, case-control study of samples collected from 15,254 individuals from 142 sites in North America, of whom 8,584 had cancer and 6,670 who did not. This test is intended to be used along with guideline-recommended screening and not replace it. They had previously reported that the targeting methylation assay made by GRAIL Inc (Menlo Park, CA, USA) detected and localized more than 20 cancers types with greater than 99% specificity among individuals with cancer in the study.

The team reported on the assessment of the utility of the test in a subset of 303 individuals with a high clinical suspicion (HCS) of cancer through clinical and/or radiological assessments, but without a confirmed pathology-based diagnosis at the time of enrollment. Subsequent pathological analysis showed that in the training set of 213 subjects, 164 had clinically confirmed cancer; in the validation set of 90 subjects, 75 of them had clinically confirmed cancer.

The sensitivity of the test, or the ability of the test to detect any cancer of stages 1 to 4 in clinically confirmed cancer patients, was 40.2% and 46.7% in the training and validation sets, respectively. Excluding samples of kidney cancer, which has a low tumor fraction in the blood, improved the sensitivity of the test. The test could predict the tissue of origin in 93.9% and 100% of the cases in the training and validation sets, respectively. This prediction was accurate in 85.5% and 97.1% in the training and validation sets, respectively.

David D. Thiel, MD, a physician and lead author of the study, said, “Many cancers are detected too late. A simple and noninvasive multicancer early detection test could potentially decrease cancer-related mortality.” The study was presented at the virtual annual meeting of the American Association for Cancer Research Annual Meeting held April 27 - 28, 2020.

Related Links:
Mayo Clinic
GRAIL Inc


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Automated Nucleic Acid Extractor
eLab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Small molecule modulation of protein corona significantly enhances deep plasma proteome profiling (Photo courtesy of Mahmoudi Group)

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

It has long been established that the earlier a disease is detected, the better the chances for a positive patient outcome. A novel method now offers an in-depth analysis of proteins in plasma, uncovering... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.