We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Digital Pathology Solution Resolves the Tissue Floater Conundrum

By LabMedica International staff writers
Posted on 30 Jul 2020
Print article
Image: The Aperio AT2 is the ideal digital pathology slide scanner for high-throughput clinical laboratories, delivering precise eSlides with low rescan rate (Photo courtesy of Leica Biosystems).
Image: The Aperio AT2 is the ideal digital pathology slide scanner for high-throughput clinical laboratories, delivering precise eSlides with low rescan rate (Photo courtesy of Leica Biosystems).
In routine clinical practice, pathologists may encounter extraneous pieces of tissue on glass slides that could be because of contamination from other specimens. These are typically called tissue floaters. The dilemma pathologists often face is whether such a tissue floater truly belongs to the case in question, or if instead it represents a true contaminant from another patient’s sample in which case it should be ignored.

There are currently several measures a pathologist can employ to troubleshoot the tissue floater problem. Akin to forensic analysis, some laboratories have implemented molecular techniques (e.g., DNA fingerprinting for tissue identity testing) to try resolve this problem by dissecting, testing, and then comparing the molecular results of the tissue floater to the adjacent patient sample on the glass slide.

Clinical Pathologists at the University of Michigan (Ann Arbor, MI, USA) and their colleagues demonstrated the feasibility of using an image search tool to resolve the tissue floater conundrum. A glass slide was produced containing two separate hematoxylin and eosin (H&E)-stained tissue floaters. This fabricated slide was digitized along with the two slides containing the original tumors used to create these floaters. These slides were then embedded into a dataset of 2,325 whole slide images comprising a wide variety of H&E stained diagnostic entities. Digital slides were broken up into patches and the patch features converted into barcodes for indexing and easy retrieval. A deep learning-based image search tool was employed to extract features from patches via barcodes, hence enabling image matching to each tissue floater.

All three slides were then entirely digitized at ×40 magnification using an Aperio AT2 whole slide scanner (Leica Biosystems, Richmond, IL, USA). The quality of these digital slides was checked to avoid inclusion of unique identifiers All the slides were then entirely digitized at ×40 magnification using an Aperio AT2 scanner. The quality of these digital slides was checked to avoid inclusion of unique identifiers. These whole slide images (WSIs) included cases from a wide variety of anatomic sites (e.g., colon, brain, thyroid, prostate, breast, kidney, salivary gland, skin, soft tissue, etc.) exhibiting varied diagnostic pathologic entities (i.e., reactive, inflammatory, benign neoplasms, and malignancies).

The scientists reported that there was a very high likelihood of finding a correct tumor match for the queried tissue floater when searching the digital database. Search results repeatedly yielded a correct match within the top three retrieved images. The retrieval accuracy improved when greater proportions of the floater were selected. The time to run a search was completed within several milliseconds. The image search results for matching tissue floaters when using the UPMC 300 WSI pilot dataset showed that the median rank best result for both the bladder and colon tumor was 1 (95% CI =1) when selecting 5% up to 100% of the floater region.

The authors concluded that using an image search tool offers pathologists an additional method to rapidly resolve the tissue floater conundrum, especially for those laboratories that have transitioned to going fully digital for primary diagnosis. The study was published on July 15, 2020 in the journal Archives of Pathology & Laboratory Medicine.



Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.