We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Prostate Cancer Identified By Profiling Immune Cell Subsets

By LabMedica International staff writers
Posted on 19 Aug 2020
Print article
The Gallios 10-color/3-laser flow cytometer (Photo courtesy of Beckman Coulter).
The Gallios 10-color/3-laser flow cytometer (Photo courtesy of Beckman Coulter).
With an estimated 1.8 million new cases in 2018 alone, prostate cancer is the fourth most common cancer in the world. Diagnosing the disease early increases the chances of survival, but this cancer remains difficult to detect.

The best diagnostic test currently available measures the blood level of a protein called the prostate-specific antigen (PSA for short). Heightened amounts of PSA may mean that the patient has cancer, but 15% of individuals with prostate cancer have normal levels of the protein.

A team of scientists at Nottingham Trent University (Nottingham, UK) and their colleagues obtained peripheral blood samples from individuals suspected of having prostate cancer that attended the Urology Clinic at Leicester General Hospital (Leicester, UK) between 24th October 2012 and 15th August 2014. Peripheral blood (60 mL) was collected from all patients using standard clinical procedures, and the peripheral blood mononuclear cell (PBMC) fraction was harvested. The PBMCs were processed and incubated with a monoclonal antibody (mAb) panel. Data on viable cells were acquired within 1 hour using a Gallios 10-color/3-laser flow cytometer (Beckman Coulter, Indianapolis, IN, USA).

The team collected and examined the natural killer cells of 72 participants with slightly elevated PSA levels and no other symptoms. Amongst these, 31 individuals had prostate cancer and 41 were healthy. These biological data were then used to produce computer models that could detect the presence of the disease, as well as assess its severity. The algorithms were developed using machine learning, where previous patient information is used to make prediction on new data.

Statistical and computational methods identified a panel of eight phenotypic features (CD56dimCD16high, CD56+DNAM−1−, CD56+LAIR−1+, CD56+LAIR−1−, CD56brightCD8+, CD56+NKp30+, CD56+NKp30−, CD56+NKp46+) that, when incorporated into an Ensemble machine learning prediction model, distinguished between the presence of benign prostate disease and prostate cancer. The machine learning model was then adapted to predict the D’Amico Risk Classification using data from 54 patients with prostate cancer and was shown to accurately differentiate between the presence of low-/intermediate-risk disease and high-risk disease without the need for additional clinical data.

The authors concluded that their study resulted in a new detection tool which was 12.5% more accurate than the PSA test in detecting prostate cancer; and in a detection tool that was 99% accurate in predicting the risk of the disease (in terms of clinical significance) in individuals with prostate cancer. This simple blood test has the potential to transform prostate cancer diagnostics. The study was published on July 28, 2020 in the journal eLife.

Related Links:

Nottingham Trent University
Leicester General Hospital
Beckman Coulter
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.