We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pan-Cancer Study Reveals Extrachromosomal DNA Frequency

By LabMedica International staff writers
Posted on 01 Sep 2020
Print article
Image: Scanning electron micrograph of inside the nucleus of a cancer cell, chromosomes are indicated by blue arrows and circular extrachromosomal DNA are indicated by orange arrows (Photo courtesy of Paul S. Mischel, MD, UC San Diego).
Image: Scanning electron micrograph of inside the nucleus of a cancer cell, chromosomes are indicated by blue arrows and circular extrachromosomal DNA are indicated by orange arrows (Photo courtesy of Paul S. Mischel, MD, UC San Diego).
Extrachromosomal circular DNA (eccDNA) are circular DNA found in human, plant and animal cells in addition to chromosomal DNA. eccDNA originate from chromosomal DNA and can be from 50 base pairs to several mega-base pairs in length and encode regulatory elements and several full genes.

Extrachromosomal DNA (ecDNA) amplification promotes intratumoral genetic heterogeneity and accelerated tumor evolution; however, its frequency and clinical impact are unclear. The circular shape of ecDNA differs from the linear structure of chromosomal DNA in meaningful ways that influence cancer pathogenesis.

Scientists from the Jackson Laboratory for Genomic Medicine (Farmington, CT, USA) and their colleagues at the University of California at San Diego (San Diego, CA, USA) used computational analysis of whole-genome sequencing, RNA sequencing, or ATAC-seq data from 3,212 cancer patients and showed that ecDNA amplification frequently occurs in most cancer types but not in blood or normal tissue. Such amplifications were missing from normal tissue samples, but they did turn up across cancer types in all but the blood cancers considered, that is often carrying oncogenes along with them.

Notably, the team saw signs that the presence of ecDNA in a tumor generally corresponded with poorer patient outcomes compared with non-ecDNA tumors from the same cancer types, pointing to a potential role for ecDNA in tumor aggressiveness or the possibility of using the rogue DNA prognostically. Bringing in additional RNA-seq and ATAC-seq data provided the investigators with a chance to look at the impact of some ecDNAs and the oncogenes they carry in cancer, while five-year survival data for patients with or without circular amplicons in their tumors revealed the potential differences in outcomes coinciding with the ecDNAs.

The authors concluded that their results demonstrated that ecDNA-based oncogene amplification is common in cancer, is different from chromosomal amplification and drives poor outcome for patients across many cancer types. The potential to leverage the presence of ecDNAs in human cancers for diagnostic or therapeutic purposes provides a link between cancer genomics and broad utility for patient populations. The study was published on August 17, 2020 in the journal Nature Genetics.

Related Links:
Jackson Laboratory for Genomic Medicine
University of California at San Diego


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.