Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gut Microbiome Data Helps Routine Screening of Cardiovascular Disease

By LabMedica International staff writers
Posted on 22 Sep 2020
Besides genetics and environmental factors, gut microbiota has emerged as a new factor influencing cardiovascular disease (CVD). Although cause-effect relationships are not clearly established, the reported associations between alterations in gut microbiota and CVD are prominent.

Recent studies have found a link between gut microbiota, the microorganisms in human digestive tracts, and, CVD which is the leading cause of mortality worldwide. Gut microbiota is highly variable between individuals, and differences in gut microbial compositions between people with and without CVD have been reported.

Scientists at the University of Toledo (Toledo, OH, USA) hypothesized that machine learning (ML) could be used for gut microbiome–based diagnostic screening of CVD. To test their hypothesis, fecal 16S ribosomal RNA sequencing data of 478 CVD and 473 non-CVD human subjects collected through the American Gut Project were analyzed using five supervised ML algorithms, including random forest, support vector machine, decision tree, elastic net, and neural networks.

The team identified 39 differential bacterial taxa between the CVD and non-CVD groups. ML modeling using these taxonomic features achieved a testing area under the receiver operating characteristic curve (0.0, perfect antidiscrimination; 0.5, random guessing; 1.0, perfect discrimination) of ≈0.58 (random forest and neural networks). Next, the ML models were trained with the top 500 high-variance features of operational taxonomic units, instead of bacterial taxa, and an improved testing area under the receiver operating characteristic curves of ≈0.65 (random forest) was achieved.

Further, by limiting the selection to only the top 25 highly contributing operational taxonomic unit features, the area under the receiver operating characteristic curves was further significantly enhanced to ≈0.70. Among the bacteria identified were Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus and Listeria were more abundant in the CVD group. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes and Neisseria were more abundant in the non-CVD group.

Bina Joe, PhD, FAHA, Distinguished University Professor and Chairwoman of the department of Physiology and Pharmacology, said, “Despite the fact that gut microbiomes are highly variable among individuals, we were surprised by the promising level of accuracy obtained from these preliminary results, which indicate fecal microbiota composition could potentially serve as a convenient diagnostic screening method for CVD.”

The authors concluded that overall, the study was the first to identify dysbiosis of gut microbiota in CVD patients as a group and apply this knowledge to develop a gut microbiome–based ML approach for diagnostic screening of CVD. The study was published on September 10, 2020 in the journal Hypertension.

Related Links:
University of Toledo


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Myeloperoxidase Assay
IDK MPO ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.