Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




Mitoses Counted with Digital Pathology in Breast Phyllodes Tumors

By LabMedica International staff writers
Posted on 26 Nov 2020
Phyllodes tumors (PTs) are a fibroepithelial tumor composed of an epithelial and a cellular stromal component. They may be considered benign, borderline, or malignant depending on histologic features including stromal cellularity, infiltration at the tumor's edge, and mitotic activity.

Digital pathology (DP) is becoming more widely available and has been harnessed to enhance diagnosis and access to subspecialty opinion, promote education, and may also be deployed for remote reporting. DP has enabled the development of artificial intelligence (AI) in pathology, through image analysis and machine learning, including working toward open source access.

Pathologists at the Singapore General Hospital (Singapore) and their colleagues chose representative slides from 93 cases of PTs diagnosed between 2014 and 2015. The mean age ± SD of the cohort was 42.5 ± 12.7 years. Of these, 60 were benign, 31 borderline, and two malignant, which were graded based on the World Health Organization guidelines. Specifically, stromal hypercellularity and stromal atypia were categorized into mild, moderate, and marked, according to the consensus review.

The slides were scanned with the IntelliSite Ultra-Fast Scanner (Philips Digital Pathology Solutions, Eindhoven, the Netherlands) and viewed with the Philips’ Image Management System viewer. Mitotic counting was conducted on the whole slide image, before choosing 10 high powered fields (HPFs) and demarcating the tumor area in DP. Values of mitoses/mm2 were used to compare results between 10 HPFs and the whole slide. Correlations with clinicopathological parameters were conducted.

The scientists reported that in terms of atypia, 65 (70.0%) PT cases displayed mild atypia, followed by 27 (29.0%) moderate atypia and one (1%) marked atypia. For stromal cellularity, 50 (53.8%) tumors displayed moderate hypercellularity, followed by 31 (33.3%) mild hypercellularity and 12 (12.9%) marked hypercellularity. The mean size of the tumors was 4.6 ± 3.3 cm3 (mean ± SD cm3). Both whole slide counting of mitoses and 10 HPFs had similar statistically significant correlation coefficients with grade, stromal atypia, and stromal hypercellularity. Neither whole slide mitotic counts nor mitoses per 10 HPFs showed statistically significant correlations with patient age and tumor size.

The authors concluded that an accurate set of 10 HPFs that yielded a maximal mitotic count can be chosen after evaluating the whole slide. DP makes counting mitoses over a larger area subjectively easier, with the possibility of AI being used as facilitator and enabler. This could influence how to approach training, testing, and validation of future AI algorithms for mitotic counting. The study was published in the November. 2020 issue of the journal Archives of Pathology and Laboratory Medicine.

Related Links:
Singapore General Hospital
Philips Digital Pathology Solutions



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.