We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Jagged Ends of Urinary Cell-Free DNA Assessed in Bladder Cancer Detection

By LabMedica International staff writers
Posted on 27 May 2021
Print article
Image: Schematic of workflow for urinary DNA jagged end analysis. Urinary DNA was subjected to an end-repair process; JI-U = jagged index–unmethylated (Photo courtesy of The Chinese University of Hong Kong)
Image: Schematic of workflow for urinary DNA jagged end analysis. Urinary DNA was subjected to an end-repair process; JI-U = jagged index–unmethylated (Photo courtesy of The Chinese University of Hong Kong)
Bladder cancer is where a growth of abnormal tissue, known as a tumor, develops in the bladder lining. In some cases, the tumor spreads into the bladder muscle. The most common symptom of bladder cancer is blood in the urine, which is usually painless.

Cell-free DNA (cfDNA) molecules in plasma consist of fragments of DNA. Much interest has been focused recently on the fragmentation patterns of such DNA molecules. The fragment sizes and ends, for example, display nucleosomal features in relation to the tissues of origin. When compared with plasma DNA, urinary cfDNA molecules exhibit a different size profile; therefore, urinary DNA molecules are much more fragmented than plasma DNA.

Medical Scientists at The Chinese University of Hong Kong (Shatin, Hong Kong, China) and their colleagues obtained bisulfite sequencing data of urinary DNA from a previous study, including 46 patients with bladder cancer, all of whom were urothelial cell carcinoma, and 39 control participants with hematuria, but without detectable bladder cancer. Among patients with bladder cancer, 37 had non–muscle-invasive bladder cancer and nine patients with muscle-invasive bladder cancer.

Urinary cfDNA was extracted using the Wizard Plus Minipreps DNA Purification System (Promega, Madison, WI, USA) with the addition of guanidine thiocyanate to urine before mixing with resin. DNA libraries were sequenced using the Illumina HiSeq 2500 or NextSeq 500 with a 41 bp × 2 paired-end sequencing protocol (Illumina, San Diego, CA, USA). Incorporation of unmethylated cytosines during the repair of the jagged ends lowered the apparent methylation levels measured by bisulfite sequencing and were used to calculate a jagged end index. This approach is called jagged end analysis by sequencing.

The investigators reported that the jagged end index of urinary cfDNA was higher than that of plasma DNA. The jagged end index profile of plasma DNA displayed several strongly oscillating major peaks at intervals of approximately 165 bp (i.e., nucleosome size) and weakly oscillating minor peaks with periodicities of approximately 10 bp. In contrast, the urinary DNA jagged end index profile showed weakly oscillating major peaks, but strongly oscillating minor peaks. The jagged end index was generally higher in nucleosomal linker DNA regions. The 46 Patients with bladder cancer had lower jagged end indexed of urinary DNA than 39 participants without bladder cancer. The area under the curve for differentiating between patients with and without bladder cancer was 0.83.

The authors concluded that jagged ends represent a property of urinary cfDNA. The generation of jagged ends might be related to nucleosomal structures, with enrichment in linker DNA regions. Jagged ends of urinary DNA could potentially serve as a new biomarker for bladder cancer detection. The study was published in the April, 2021 issue of the journal Clinical Chemistry.

Related Links:
The Chinese University of Hong Kong
Promega
Illumina


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Centrifuge
Centrifuge 5430/ 5430 R
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.