We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Tear-Based Method Detects Breast Cancer

By LabMedica International staff writers
Posted on 11 May 2022
Print article
Image: a) Schematic of Tear Collection using Schirmer strip before being analyzed by LC-MS/MS and validated by ELISA. b) Functional classification of 301 mapped proteins in tear samples using PANTHER classification system (Photograph courtesy of Namida Lab)
Image: a) Schematic of Tear Collection using Schirmer strip before being analyzed by LC-MS/MS and validated by ELISA. b) Functional classification of 301 mapped proteins in tear samples using PANTHER classification system (Photograph courtesy of Namida Lab)

With advances in screening techniques, and adjustment of recommended screening guidelines, mortality rates due to breast cancer continue to decline. Despite the estimated waning in mortality rates, breast cancer still remains the highest cancer diagnosis of women globally.

With continued advancement in biomarker identification techniques, there is increasing interest in finding markers of disease in non-traditional biological fluids. Breast cancer associated biomarkers have been identified in urine, nipple fluid aspirate, as well as breast milk. Tear fluid is one of the most underrated biofluids that has been gaining interest in recent years.

Scientist at the Namida Lab Inc (Fayetteville, AR, USA) and their medical colleagues examined the ocular proteome to identify protein biomarkers with altered expression levels in women diagnosed with breast cancer. They collected tear samples from 273 participants using Schirmer strip collection methods.

Following protein elution, proteome wide trypsin digestion with liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to identify potential protein biomarkers with altered expression levels in breast cancer patients. MS/MS analysis using collision-induced dissociation on an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). MS data was acquired using the FTMS analyzer in profile mode at a resolution of 60,000 over a range of 375 to 1500 m/z. Selected biomarkers were further validated by enzyme linked immunosorbent assay (ELISA). Standard sandwich ELISA procedures using DuoSets ELISA kits (R&D Systems, Minneapolis, MN, USA) were used to evaluate the expression level of S100A8 (SA8), S100A9 (SA9), and Galectin-3-Binding Protein (LG3BP) in tear samples

The investigators reported that a total of 102 individual tear samples (51 breast cancer, 51 control) were analyzed by LC-MS/MS which identified 301 proteins. Spectral intensities between the groups were compared and 14 significant proteins were identified as potential biomarkers in breast cancer patients. Three biomarkers, S100A8, (7.8-fold increase), S100A9, (10.2-fold increase), and Galectin-3 binding protein ( 3.0-fold increase) with an increased expression in breast cancer patients were selected for validation using ELISA.

Validation by ELISA was conducted using 171 individual tear samples (75 Breast Cancer and 96 Control). Similar to the observed LC-MS/MS results, S100A8 and S100A9 showed significantly higher expression in breast cancer patients. However, galectin-3 binding protein had increased expression in the control group.

The authors concluded that their results provided further support for using tear proteins to detect non-ocular systemic diseases such as breast cancer. The work provided crucial details to support the continued evaluation of tear samples in the screening and diagnosis of breast cancer and paves the way for future evaluation of the tear proteome for screening and diagnosis of systemic diseases. The study was published on April 26, 2022 in the journal PLOS ONE.

Related Links:
Namida Lab Inc 
Thermo Fisher Scientific 
R&D Systems 

Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
PSA Test
Human Semen Rapid Test
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.