We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Analyzes Cells in Tissue Samples without Need for Trained Pathologist

By LabMedica International staff writers
Posted on 07 Apr 2023
Print article
Image: The tissue biopsy is processed through a tissue grind and then analyzed using real-time deformability cytometry (Photo courtesy of MPL)
Image: The tissue biopsy is processed through a tissue grind and then analyzed using real-time deformability cytometry (Photo courtesy of MPL)

Fast and precise information regarding the operated tissue is crucial for guiding a surgeon's next steps during cancer surgery. In cases where solid tumors are present in a cancer patient, the surgeon typically sends a biopsy sample to a pathologist for a rapid assessment. The pathologist must determine, among other things, whether the tissue is healthy, the extent of cancer's spread into the organs, etc. The traditional intraoperative diagnostic process is laborious, time-consuming, and resource-intensive. Now, scientists have developed a new technique that can perform a reliable analysis of solid tumors in as little as 30 minutes, without the need for a trained pathologist.

A research team from the Max Planck Institute for the Science of Light (MPL, Erlangen, Germany) has created a novel technique that enables clinicians to analyze cells in tissue samples from cancer patients quickly and precisely, without requiring the expertise of a trained pathologist. The team used artificial intelligence (AI) to evaluate the data generated by their method. For their study, the researchers utilized a tissue grinder to quickly tear apart biopsy samples down to the single-cell level. Subsequently, these single cells were analyzed using real-time deformability cytometry (RT-DC), an approach that is label-free and capable of examining the physical properties of up to 1,000 cells per second. This method is 36,000 times faster than the conventional methods used to evaluate cell deformability.

RT-DC involves pushing single cells at high speed through a microscopic channel, where they undergo deformation due to stress and pressure. Images are captured of each cell, which are then utilized by scientists to ascertain a variety of physical characteristics of the cells, including their size, shape, and deformability. However, solely conducting a physical analysis of cells is insufficient for diagnostic purposes. Physicians must be able to interpret these outcomes independently, without the need for the expertise of a trained pathologist or physicist. Therefore, to accomplish this, the researchers combined the tissue grinder and RT-DC with AI. The AI model evaluates the extensive, complex datasets obtained through RT-DC analysis and rapidly assesses whether a biopsy sample comprises cancerous tissue or not. Furthermore, the use of AI confirmed the significance of cell deformability as a biomarker, as the outcomes were markedly inferior when the AI was not trained with this variable.

Overall, the complete procedure, which includes sample processing and automated data analysis, can be executed in under 30 minutes, making it sufficiently fast to be carried out during surgery. One significant advantage of this method is that it does not require the immediate availability of a pathologist to analyze the sample. This is particularly advantageous since intraoperative consultations may not always be feasible, and in some cases, samples can only be examined after the surgery is completed. Based on the results, patients may need to return to the hospital for further surgery, often days later. Aside from testing for tumor presence, this technique was also utilized to detect tissue inflammation in a model of inflammatory bowel disease (IBD). In the future, this method could assist clinicians in evaluating disease severity or distinguishing between various types of IBD. The team aims to eventually transition their method into a clinical setting to support or perhaps even supplant the traditional pathological analysis.

“This was a proof of concept study - the method could accurately determine the presence of tumor tissue in our samples very quickly,” said Dr. Despina Soteriou, a member of the research team. “The next step will be to continue to work very closely with clinicians to determine how this method can best be translated into the clinic.”

Related Links:
MPL 

Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Thyroxine ELISA
T4 ELISA
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.