We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




ML Model Combines Imaging, Clinical, and DNA Methylation Biomarkers for Early Lung Cancer Detection

By LabMedica International staff writers
Posted on 17 Aug 2023
Print article
Image: A combined ML model enables accurate classification of pulmonary nodules (Photo courtesy of Freepik)
Image: A combined ML model enables accurate classification of pulmonary nodules (Photo courtesy of Freepik)

Lung cancer is responsible for a significant number of cancer-related deaths around the globe. Although various treatments, including chemotherapy, immunotherapy, and surgery, have progressed, the overall outlook for lung cancer patients remains grim. This mainly stems from late diagnosis, often at stages III or IV, when the five-year survival rate falls below 10%. Early detection at stages 0–II could significantly lower mortality, but the lack of sensitive technologies and noticeable symptoms in early stages presents substantial challenges.

Deoxyribonucleic acid (DNA) methylation biomarkers have shown potential for early lung cancer detection, as they indicate events connected to tumor initiation. The use of next-generation sequencing methods to identify methylation patterns in circulating tumor DNA could enable non-invasive lung cancer screening. While low-dose computerized tomography (LDCT) has been effective in early detection among high-risk groups, determining the malignancy risk of pulmonary nodules via LDCT remains a challenge. Now, researchers have developed and validated a combined machine learning model comprising imaging, clinical, and cell-free DNA methylation biomarkers that improves the classification of pulmonary nodules and enables earlier diagnosis of lung cancer.

In the new study, researchers at Guangzhou Medical University (Guangzhou, China) developed a combined model of clinical and imaging biomarkers (CIBM) that uses machine learning algorithms to differentiate malignant and benign pulmonary nodules. When integrated with PulmoSeek, a pre-existing cell-free DNA methylation model, the CIBM model can identify small-sized nodules to diagnose lung cancer in its initial stages. For their study, the researchers conducted a study involving participants 18 years and older, with specific types of pulmonary nodules, across 20 Chinese cities. Utilizing over 800 samples, the researchers trained the machine-learning algorithm of the CIBM model to distinguish between benign and malignant tumors. This CIBM model was then integrated with PulmoSeek to create PulmoSeek Plus, a combined diagnostic model. Using decision curve analysis, the team evaluated its clinical application, classifying nodules into risk groups. The aim was to evaluate the performance and diagnostic ability of three models: PulmoSeek, CIBM, and PulmoSeek Plus.

The results showed that PulmoSeek Plus holds the potential for successful early-stage diagnosis of benign or malignant pulmonary nodules. Used in conjunction with LDCT, this model could be a powerful tool in the early clinical evaluation of lung cancer. The combination of CIBM with the PulmoSeek model heightened the sensitivity of nodule classification by 6% and the negative predictive value by 24%. Moreover, the model’s performance remained strong across different types, sizes, and stages of pulmonary nodules, with sensitivities of characterization for early-stage and small nodules at 0.98 and 0.99, respectively. Particularly noteworthy was its 100% characterization sensitivity for sub-solid nodules, which are typically hard to categorize using LDCT alone. The creation of the PulmoSeek Plus model marks a significant advancement in early lung cancer detection. Given its sole requirement of non-invasive blood samples and CT images, the model offers an efficient and promising approach that could fundamentally change how lung cancer is diagnosed and managed.

Related Links:
Guangzhou Medical University 

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.