We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Approach Combines Satellite Imaging and Ecology Techniques for Analysis of Tumor Tissue

By LabMedica International staff writers
Posted on 21 Nov 2023
Print article
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)

Advancements in tumor imaging technology have significantly enhanced our ability to observe the minute details of tumors, but this also brings the challenge of interpreting vast amounts of data generated from these images. Researchers are often overwhelmed with the task of analyzing data from hundreds of molecules across tens of thousands of cells. While artificial intelligence (AI) offers a potential solution to manage this deluge of information, traditional AI methods like deep neural networks often operate as a 'black box,' providing results without transparent or comprehensible explanations. To address this, scientists are now looking towards AI techniques from other disciplines to develop new methods for interpreting tumor images.

Researchers at Karolinska Institutet (Stockholm, Sweden) and SciLifeLab (Solna, Sweden) have adopted AI strategies commonly used in satellite imaging and community ecology to manage and understand complex data from tumor tissues. Their work, detailed in the journal Nature Communications, could pave the way for more tailored cancer treatments. AI methods are already being used to categorize and identify various geographic features in satellite imagery, such as cities, bodies of water, and different types of landscapes. In the field of ecology, sophisticated analytical methods are employed to understand how different species coexist within specific environments.

Recognizing parallels between these fields and tumor analysis, the researchers applied similar techniques to the study of cancerous tissues. The methods used in satellite imagery and ecology have been adapted to analyze the intricate dynamics of tumor tissues. This approach has transformed complex datasets into valuable insights about the nature of cancer. The next phase involves applying this novel method in clinical trials. The research team is collaborating with a major cancer center to determine why only certain patients respond to immunotherapy for cancer. Additionally, they are investigating why some patients with breast cancer may not require chemotherapy. This innovative use of AI in cancer research holds promise for enhancing our understanding of cancer and improving patient outcomes.

“With our new method, we can reveal important details in tumour tissue that can determine whether a cancer treatment works or not. The long-term goal is to be able to tailor cancer treatments to individual needs and avoid unnecessary side effects,” said Jean Hausser, senior researcher at the Department of Cell and Molecular Biology, Karolinska Institutet, who led the research.

Related Links:
Karolinska Institutet
SciLifeLab

Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Repeater Pipette
CAPPR10 Repeater Pipette
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.