We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Detects Viable Tumor Cells for Accurate Bone Cancer Prognoses Post Chemotherapy

By LabMedica International staff writers
Posted on 05 Apr 2024
Print article
Image: Viable tumor cell density after neoadjuvant chemotherapy assessed using deep-learning model reflects prognosis of osteosarcoma (Photo courtesy of Kyushu University)
Image: Viable tumor cell density after neoadjuvant chemotherapy assessed using deep-learning model reflects prognosis of osteosarcoma (Photo courtesy of Kyushu University)

Osteosarcoma, the most common malignant bone tumor, has seen improved survival rates with surgery and chemotherapy for localized cases. Yet, the prognosis for advanced metastatic osteosarcoma remains grim. Traditional post-treatment prognosis methods, based on assessing necrosis or evaluating the proportion of dead tissue within the tumor, suffer from inter-observer variability and might not accurately predict treatment response. Researchers have now developed and validated a machine-learning model capable of accurately evaluating the density of surviving tumor cells in osteosarcoma pathological images, offering a more reliable prognosis prediction.

The model, developed by researchers at Kyushu University (Fukuoka, Japan), uses deep-learning algorithms to identify viable tumor cells within pathological images, matching the assessment skills of expert pathologists. This approach overcomes the limitations of the traditional method for necrosis rate assessment, which calculates the necrotic area without considering individual cell count, leading to inconsistent evaluations across pathologists and inadequate reflection of chemotherapy effects. In phase 1 of the study, the team trained the deep-learning model to detect surviving tumor cells and validated its performance using patient data. The AI model was as proficient in detecting viable tumor cells in pathological images as expert pathologists.

In phase 2, the researchers focused on disease-specific survival and metastasis-free survival. While disease-specific survival tracks the duration after diagnosis or treatment without death directly caused by the disease, metastasis-free survival monitors the time post-treatment without cancer cells spreading to distant body parts. They also examined the correlation between AI-estimated viable tumor cell density and prognosis. The findings revealed that the AI model’s detection performance and precision were comparable to that of the pathologist, accompanied by good reproducibility. The team then divided the patients into groups based on whether the viable tumor cell density was above or below 400/mm2. They found that a higher density correlated with a poorer prognosis, while a lower density indicated a better outcome.

The team found that the necrosis rate was not associated with disease-specific survival or metastasis-free survival. Further analysis of individual cases showed that AI-estimated viable tumor cell density is a more reliable predictor of prognosis than necrosis rate. These findings suggest that by incorporating AI in pathological image analysis, this method enhances detection accuracy, minimizes variability among assessors, and offers prompt evaluations. Estimating viable tumor cell density, which indicates the cells' proliferation potential post-chemotherapy, emerges as a superior indicator of treatment efficacy over traditional necrosis rate assessment. This AI model promises significant advancements in clinical settings after broader validation to facilitate its widespread application.

“This new approach has the potential to enhance the accuracy of prognoses for osteosarcoma patients treated with chemotherapy,” said Dr. Makoto Endo, a lecturer of Orthopedic Surgery at Kyushu University Hospital. “In the future, we intend to actively apply AI to rare diseases such as osteosarcoma, which have seen limited advancements in epidemiology, pathogenesis, and etiology. Despite the passage of decades, particularly in treatment strategies, substantial progress remains elusive. By putting AI to the problem, this might finally change.”

Related Links:
Kyushu University

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0

Print article

Channels

Molecular Diagnostics

view channel
Image: The study explored how emerging plasma biomarkers are related to the diagnostic tests currently used in clinical routines (Photo courtesy of Shutterstock)

Study Offers New Insights into Alzheimer's Disease Biomarkers

As of November 14, 2024, the European Medicines Agency (EMA) has recommended, for the first time, a drug aimed at slowing the progression of Alzheimer's disease (AD). This marks a significant milestone... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.