We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

By LabMedica International staff writers
Posted on 26 Apr 2024
Print article
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope to identify cancerous markers. This lengthy procedure often results in patients waiting weeks or months for their results, causing treatment delays and heightened anxiety. Now, a breakthrough digital medical imaging system promises to transform cancer detection by offering instantaneous results, facilitating timely and effective treatment across all cancer types.

The Photon Absorption Remote Sensing (PARS) system, an innovative, built-from-scratch technology developed by researchers at the University of Waterloo (Ontario, Canada), marks a radical departure from traditional cancer detection methods, promising diagnoses within minutes and enabling rapid surgical intervention. The system utilizes lasers to irradiate tissue samples, producing a comprehensive, high-resolution data set. This data is then processed by an artificial intelligence (AI) system that converts it into a conventional histopathology image for pathologist review. This innovative approach eliminates the need for multiple slide preparations by using digital image filters on a single tissue sample, allowing multiple reads without damaging the tissue, thus preserving it for further necessary analyses.

By substituting traditional procedures with this advanced, AI-driven high-resolution imaging, the PARS system drastically cuts down diagnostic times, conserving time and resources. It has proven highly precise in clinical trials involving human breast tissue; pathologists found no distinguishable differences between images produced by the PARS system and those obtained through traditional methods. The technology demonstrated a 98% accuracy rate in line with established diagnostic techniques.

“This invention will transform digital pathology, enabling surgeons to obtain multiple results simultaneously with just one biopsy and provide accurate diagnoses within minutes,” said Dr. Parsin Haji Reza, lead researcher and a professor in Waterloo’s Department of Systems Design Engineering. “It also ensures thorough removal of cancerous tissue before closing the incision, mitigating the need for further surgeries.”

Related Links:
University of Waterloo

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.