We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

By LabMedica International staff writers
Posted on 26 Apr 2024
Print article
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope to identify cancerous markers. This lengthy procedure often results in patients waiting weeks or months for their results, causing treatment delays and heightened anxiety. Now, a breakthrough digital medical imaging system promises to transform cancer detection by offering instantaneous results, facilitating timely and effective treatment across all cancer types.

The Photon Absorption Remote Sensing (PARS) system, an innovative, built-from-scratch technology developed by researchers at the University of Waterloo (Ontario, Canada), marks a radical departure from traditional cancer detection methods, promising diagnoses within minutes and enabling rapid surgical intervention. The system utilizes lasers to irradiate tissue samples, producing a comprehensive, high-resolution data set. This data is then processed by an artificial intelligence (AI) system that converts it into a conventional histopathology image for pathologist review. This innovative approach eliminates the need for multiple slide preparations by using digital image filters on a single tissue sample, allowing multiple reads without damaging the tissue, thus preserving it for further necessary analyses.

By substituting traditional procedures with this advanced, AI-driven high-resolution imaging, the PARS system drastically cuts down diagnostic times, conserving time and resources. It has proven highly precise in clinical trials involving human breast tissue; pathologists found no distinguishable differences between images produced by the PARS system and those obtained through traditional methods. The technology demonstrated a 98% accuracy rate in line with established diagnostic techniques.

“This invention will transform digital pathology, enabling surgeons to obtain multiple results simultaneously with just one biopsy and provide accurate diagnoses within minutes,” said Dr. Parsin Haji Reza, lead researcher and a professor in Waterloo’s Department of Systems Design Engineering. “It also ensures thorough removal of cancerous tissue before closing the incision, mitigating the need for further surgeries.”

Related Links:
University of Waterloo

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Cortisol/Cortisone Saliva Controls
MassCheck Chromsystems Saliva Controls
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.