We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Model Identifies Patients with High-Risk Form of Endometrial Cancer

By LabMedica International staff writers
Posted on 28 Jun 2024
Print article
Image: Dr. Ali Bashashati (pictured) and his team are using AI to power precision diagnostic tools for endometrial cancer (Photo courtesy of UBC)
Image: Dr. Ali Bashashati (pictured) and his team are using AI to power precision diagnostic tools for endometrial cancer (Photo courtesy of UBC)

Endometrial cancer is the most common gynecological cancer and varies widely in aggressiveness, with some forms more likely to return than others. This variability underscores the need to identify patients with high-risk endometrial cancer to tailor interventions and prevent recurrence. Researchers are now harnessing artificial intelligence (AI) to develop precision diagnostic tools for endometrial cancer, thereby enhancing patient care.

Researchers at the University of British Columbia (Vancouver, BC, Canada) utilized AI to analyze thousands of cancer cell images and identify a specific subset of endometrial cancer associated with a higher risk of recurrence and death, which might not be detectable through standard pathology and molecular diagnostics. This innovation is set to aid clinicians in identifying patients who require more aggressive treatment strategies. Building on their foundational research from 2013, which categorized endometrial cancer into four molecular subtypes, each with distinct risk levels, the team developed a molecular diagnostic tool called ProMiSE that effectively differentiates these subtypes. However, the most common molecular subtype, which accounts for about half of all cases, serves as a broad category for cancers that lack specific molecular characteristics.

To further segment the category using advanced AI methods, the team created a deep-learning AI model that examines patient tissue sample images. This model was trained to distinguish between subtypes, and after evaluating over 2,300 cancer tissue images, it identified a new subgroup with significantly lower survival rates. The researchers are considering how this AI tool could be incorporated into regular clinical practice alongside traditional diagnostics. An advantage of this AI approach is its cost-effectiveness and the ease with which it can be implemented widely. The AI reviews images typically collected and examined by pathologists, making it accessible for use in smaller medical facilities in rural and remote areas, often involved when seeking second opinions. By integrating molecular and AI-based analyses, many patients might continue receiving care in their local communities, reserving more complex treatments for those who need the resources of larger cancer centers.

“The power of AI is that it can objectively look at large sets of images and identify patterns that elude human pathologists,” said Dr. Ali Bashashati, a machine learning expert and assistant professor of biomedical engineering and pathology and laboratory medicine at UBC. “It’s finding the needle in the haystack. It tells us this group of cancers with these characteristics are the worst offenders and represent a higher risk for patients.” The results of the team's study were published in Nature Communications on June 26, 2024.

Related Links:
University of British Columbia
Gynecologic Cancer Initiative

New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Dehydroepiandrosterone Assay
DHEA ELISA
New
QC Software Solution
Unity Interlaboratory Program

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.