Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Identifies Patients with High-Risk Form of Endometrial Cancer

By LabMedica International staff writers
Posted on 28 Jun 2024

Endometrial cancer is the most common gynecological cancer and varies widely in aggressiveness, with some forms more likely to return than others. This variability underscores the need to identify patients with high-risk endometrial cancer to tailor interventions and prevent recurrence. Researchers are now harnessing artificial intelligence (AI) to develop precision diagnostic tools for endometrial cancer, thereby enhancing patient care.

Researchers at the University of British Columbia (Vancouver, BC, Canada) utilized AI to analyze thousands of cancer cell images and identify a specific subset of endometrial cancer associated with a higher risk of recurrence and death, which might not be detectable through standard pathology and molecular diagnostics. This innovation is set to aid clinicians in identifying patients who require more aggressive treatment strategies. Building on their foundational research from 2013, which categorized endometrial cancer into four molecular subtypes, each with distinct risk levels, the team developed a molecular diagnostic tool called ProMiSE that effectively differentiates these subtypes. However, the most common molecular subtype, which accounts for about half of all cases, serves as a broad category for cancers that lack specific molecular characteristics.

To further segment the category using advanced AI methods, the team created a deep-learning AI model that examines patient tissue sample images. This model was trained to distinguish between subtypes, and after evaluating over 2,300 cancer tissue images, it identified a new subgroup with significantly lower survival rates. The researchers are considering how this AI tool could be incorporated into regular clinical practice alongside traditional diagnostics. An advantage of this AI approach is its cost-effectiveness and the ease with which it can be implemented widely. The AI reviews images typically collected and examined by pathologists, making it accessible for use in smaller medical facilities in rural and remote areas, often involved when seeking second opinions. By integrating molecular and AI-based analyses, many patients might continue receiving care in their local communities, reserving more complex treatments for those who need the resources of larger cancer centers.

“The power of AI is that it can objectively look at large sets of images and identify patterns that elude human pathologists,” said Dr. Ali Bashashati, a machine learning expert and assistant professor of biomedical engineering and pathology and laboratory medicine at UBC. “It’s finding the needle in the haystack. It tells us this group of cancers with these characteristics are the worst offenders and represent a higher risk for patients.” The results of the team's study were published in Nature Communications on June 26, 2024.

Related Links:
University of British Columbia
Gynecologic Cancer Initiative

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Biological Indicator Vials
BI-O.K.
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.