We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




AI Model Identifies Patients with High-Risk Form of Endometrial Cancer

By LabMedica International staff writers
Posted on 28 Jun 2024
Print article
Image: Dr. Ali Bashashati (pictured) and his team are using AI to power precision diagnostic tools for endometrial cancer (Photo courtesy of UBC)
Image: Dr. Ali Bashashati (pictured) and his team are using AI to power precision diagnostic tools for endometrial cancer (Photo courtesy of UBC)

Endometrial cancer is the most common gynecological cancer and varies widely in aggressiveness, with some forms more likely to return than others. This variability underscores the need to identify patients with high-risk endometrial cancer to tailor interventions and prevent recurrence. Researchers are now harnessing artificial intelligence (AI) to develop precision diagnostic tools for endometrial cancer, thereby enhancing patient care.

Researchers at the University of British Columbia (Vancouver, BC, Canada) utilized AI to analyze thousands of cancer cell images and identify a specific subset of endometrial cancer associated with a higher risk of recurrence and death, which might not be detectable through standard pathology and molecular diagnostics. This innovation is set to aid clinicians in identifying patients who require more aggressive treatment strategies. Building on their foundational research from 2013, which categorized endometrial cancer into four molecular subtypes, each with distinct risk levels, the team developed a molecular diagnostic tool called ProMiSE that effectively differentiates these subtypes. However, the most common molecular subtype, which accounts for about half of all cases, serves as a broad category for cancers that lack specific molecular characteristics.

To further segment the category using advanced AI methods, the team created a deep-learning AI model that examines patient tissue sample images. This model was trained to distinguish between subtypes, and after evaluating over 2,300 cancer tissue images, it identified a new subgroup with significantly lower survival rates. The researchers are considering how this AI tool could be incorporated into regular clinical practice alongside traditional diagnostics. An advantage of this AI approach is its cost-effectiveness and the ease with which it can be implemented widely. The AI reviews images typically collected and examined by pathologists, making it accessible for use in smaller medical facilities in rural and remote areas, often involved when seeking second opinions. By integrating molecular and AI-based analyses, many patients might continue receiving care in their local communities, reserving more complex treatments for those who need the resources of larger cancer centers.

“The power of AI is that it can objectively look at large sets of images and identify patterns that elude human pathologists,” said Dr. Ali Bashashati, a machine learning expert and assistant professor of biomedical engineering and pathology and laboratory medicine at UBC. “It’s finding the needle in the haystack. It tells us this group of cancers with these characteristics are the worst offenders and represent a higher risk for patients.” The results of the team's study were published in Nature Communications on June 26, 2024.

Related Links:
University of British Columbia
Gynecologic Cancer Initiative

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The proposed self-powered, millifluidic lab-on-a-chip device to determine blood conductivity (Photo courtesy of Advanced Materials/DOI: 10.1002/adma.202403568)

First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring

Metabolic disorders such as diabetes and osteoporosis are rapidly increasing globally, especially in developing countries. Diagnosing these conditions generally requires blood tests; however, in remote... Read more

Molecular Diagnostics

view channel
Image: The U.S. FDA has granted marketing authorization for the Xpert HCV test together with the GeneXpert Xpress System (Photo courtesy of Cepheid)

First POC Hepatitis C RNA Test Enables Single-Visit Testing and Treatment

Hepatitis C, a liver infection caused by the hepatitis C virus (HCV), spreads through contact with the blood of an infected person. While some individuals may experience a short-term illness, over half... Read more

Hematology

view channel
Image: The new Yumizen H550E (autoloader), H500E CT (closed tube), and Yumizen H500E OT (open tube) (Photo courtesy of HORIBA)

New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds

HORIBA (Kyoto, Japan) has expanded its line of compact hematology analyzers by introducing new models that incorporate Erythrocyte Sedimentation Rate (ESR) measurement capabilities. The newly launched... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.