We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Diagnoses Cancer, Guides Treatment and Predicts Survival Across Multiple Cancer Types

By LabMedica International staff writers
Posted on 10 Sep 2024
Print article
Image: The ChatGPT-like AI model can diagnose cancer, guide treatment choice, predict survival across multiple cancer types (Photo courtesy of 123RF)
Image: The ChatGPT-like AI model can diagnose cancer, guide treatment choice, predict survival across multiple cancer types (Photo courtesy of 123RF)

Current artificial intelligence (AI) models are typically specialized, designed for specific tasks like detecting cancer or predicting tumor genetics, and are limited to a few cancer types. Scientists have now developed a versatile AI model, similar to ChatGPT, that can handle a variety of diagnostic tasks across multiple cancer types. Detailed in the September 4 issue of Nature, this advanced AI system marks a significant improvement over many existing cancer diagnostic models.

Developed by a team from Harvard Medical School (Boston, MA, USA), this new model, named CHIEF (Clinical Histopathology Imaging Evaluation Foundation), can perform a wide array of tasks and has been tested on 19 cancer types. Unlike other foundational medical diagnostic AI models that have been emerging, CHIEF is unique in its ability to predict patient outcomes and has been validated across various international patient cohorts. CHIEF has been trained using a massive dataset of 15 million unlabeled images, segmented into specific areas of interest, and further refined using 60,000 whole-slide images encompassing a diverse range of tissues, including those from lung, breast, prostate, and many others. This training enables the model to analyze specific regions within an image while considering the entire slide, promoting a more holistic image interpretation.

By analyzing digital slides of tumor tissues, CHIEF excels in detecting cancer cells, predicting molecular profiles, and assessing patient survival across different cancers. It can also identify crucial features within the tumor microenvironment that predict how a patient might respond to various treatments like chemotherapy or immunotherapy. After its comprehensive training phase, CHIEF was tested using over 19,400 whole-slide images from 32 independent datasets sourced from 24 hospitals worldwide. In these tests, CHIEF outperformed existing AI models by up to 36% in tasks such as detecting cancer cells, identifying tumor origins, predicting patient outcomes, and recognizing genetic markers that influence treatment response.

The adaptability of CHIEF allows it to perform consistently well, regardless of how the tumor samples were obtained or the digitization technique used. This flexibility makes it applicable in various clinical settings, a significant advancement over previous models, which often only excelled with certain sample types. This tool has also uncovered new tumor characteristics linked to patient survival, highlighting its potential to not only enhance cancer evaluations but also identify patients who may not benefit from standard treatments. This innovation underscores the increasing role of AI in improving cancer diagnosis and treatment.

“Our ambition was to create a nimble, versatile ChatGPT-like AI platform that can perform a broad range of cancer evaluation tasks,” said study senior author Kun-Hsing Yu, assistant professor of biomedical informatics at the Blavatnik Institute at Harvard Medical School. “Our model turned out to be very useful across multiple tasks related to cancer detection, prognosis, and treatment response across multiple cancers. If validated further and deployed widely, our approach, and approaches similar to ours, could identify early on cancer patients who may benefit from experimental treatments targeting certain molecular variations, a capability that is not uniformly available across the world.”

Related Links:
Harvard Medical School

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
STI Test
cobas TV/MG
New
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)

Print article

Channels

Molecular Diagnostics

view channel
Image: The lateral flow test could detect prostate cancer more quickly and with greater accuracy (Photo courtesy of Valley Diagnostics)

Groundbreaking Test Could Detect Prostate Cancer Within Minutes Via Urine Sample

In the UK, over 52,000 men are diagnosed with prostate cancer annually, with up to one-quarter of these cases identified at a later stage, requiring more intensive treatments. The cost to the NHS for these... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.