We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Super-Resolution Imaging Detects Parkinson's 20 Years Before First Motor Symptoms Appear

By LabMedica International staff writers
Posted on 18 Sep 2024
Print article
Image: Steps and methodology of skin biopsy processing for dSTORM (Photo courtesy of Front. Mol. Neurosci. (2024); DOI: 10.3389/fnmol.2024.1431549)
Image: Steps and methodology of skin biopsy processing for dSTORM (Photo courtesy of Front. Mol. Neurosci. (2024); DOI: 10.3389/fnmol.2024.1431549)

Parkinson's disease is the second most common neurodegenerative disorder globally, affecting approximately 8.5 million people today. This debilitating condition is characterized by the destruction of dopamine-producing neurons in the brain's Substantia Nigra. Currently, Parkinson's disease is diagnosed primarily based on clinical symptoms such as tremors or gait disturbances, along with associated questionnaires. However, these symptoms typically appear at a relatively advanced stage of the disease, by which time over 50%, and in some cases up to 80%, of the dopaminergic neurons in the Substantia Nigra have already been lost. As a result, available treatments are limited, mainly addressing motor issues.

A key feature of Parkinson's is cell death caused by the accumulation of the alpha-synuclein protein. This protein begins to aggregate approximately 15 years before symptoms appear, and cell death starts 5-10 years before diagnosis is possible using current methods. This leaves a significant diagnostic window of up to 20 years, during which the disease could potentially be detected and prevented before symptoms manifest. If the process is identified early in individuals aged 30, 40, or 50, it may be possible to prevent further protein aggregation and subsequent cell death. Researchers at Tel Aviv University (Tel Aviv, Israel), in collaboration with three major Israeli medical centers, have now developed a novel method for detecting protein aggregation in cells. This technology could allow for diagnosis up to 20 years before the onset of motor symptoms, paving the way for early intervention or prevention of the currently incurable disease.

This new approach utilizes super-resolution microscopy combined with computational analysis to precisely map the molecules and structure of protein aggregates. Previous research has shown that alpha-synuclein aggregates also form in other parts of the body, including the skin and digestive system. In the current study, the researchers examined skin biopsies from 7 people with Parkinson's disease and 7 people without the condition. Using a unique microscope and a technique called super-resolution imaging, combined with advanced computational analysis, the team was able to map the distribution and aggregation of alpha-synuclein molecules. The findings, published in Frontiers in Molecular Neuroscience, revealed a higher concentration of protein aggregates in individuals with Parkinson's compared to those without the disease. Additionally, nerve cell damage was observed in areas with large concentrations of the pathological protein. With this proof of concept, the researchers plan to expand their study by analyzing a larger sample of 90 biopsies—45 from healthy individuals and 45 from those with Parkinson's disease—in order to further explore differences between the two groups.

"Our technology will enable the detection of initial signs of Parkinson's at the cellular level up to 20 years before the first motor symptoms appear. We hope that such early diagnosis will facilitate preventive treatment for this currently incurable disease," the researchers noted.

Gold Member
Hematology Analyzer
Swelab Lumi
Gold Member
Troponin T QC
Troponin T Quality Control
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.