We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Detects Cancerous Brain Tumor During Surgery in 10 Seconds

By LabMedica International staff writers
Posted on 14 Nov 2024
Print article
Image: FastGlioma workflow (Photo courtesy of Nature 2024, DOI: https://doi.org/10.1038/s41586-024-08169-3)
Image: FastGlioma workflow (Photo courtesy of Nature 2024, DOI: https://doi.org/10.1038/s41586-024-08169-3)

When brain tumors recur, survival rates decrease, and patients with the most aggressive tumor types often pass away within a year. This happens because cancerous tissue remains after the initial surgery, and it continues to grow, sometimes at a faster rate than the original tumor. Residual tumors not only result in a lower quality of life and premature death for patients but also contribute to the burden on healthcare systems, which are projected to handle 45 million annual surgical procedures by 2030. Now, an artificial intelligence (AI)-based diagnostic system has been developed to detect cancerous tissue that might otherwise go unnoticed during brain tumor surgery. This technology allows neurosurgeons to remove the cancerous tissue while the patient is still under anesthesia or treat it afterward with targeted therapies.

In a new study, led by UC San Francisco (San Francisco, CA, USA) and University of Michigan (Ann Arbor, MI, USA), researchers demonstrated how an AI-powered diagnostic tool aids neurosurgeons in identifying hidden cancer that has spread nearby. This technique holds the potential to delay the recurrence of high-grade tumors and may even prevent recurrence in lower-grade tumors. The tool, called FastGlioma, is open-source and patented by UCSF, but it has not yet been approved by the Food and Drug Administration. FastGlioma combines AI’s predictive capabilities with stimulated Raman histology (SRH), an imaging technology that allows fresh tissue samples to be visualized at the bedside within one to two minutes. This rapid process bypasses the time-consuming procedures typically required in pathology labs for processing and interpreting tumor cells.

The AI system was trained using a dataset of over 11,000 tumor specimens and 4 million microscopic images, allowing it to accurately classify images and distinguish between tumor and healthy tissue. Neurosurgeons can receive diagnostic results within 10 seconds, enabling them to continue surgery if necessary. In the study published in Nature, neurosurgeons examined tumor samples from 220 patients with high-grade and low-grade diffuse gliomas, the most common type of adult brain tumor. The study found that 3.8% of patients who used FastGlioma had remaining high-risk tissue, compared to 24% of patients who did not use the tool. The study suggests that similar AI techniques could be tested in surgeries for other cancers, including breast, lung, prostate, and head and neck cancers.

“FastGlioma has the potential to change the field of neurosurgery by immediately improving comprehensive management of patients with glioma,” said senior author Todd Hollon, MD, of the Department of Neurosurgery at University of Michigan. “The technology works faster and more accurately than current standards of care methods for tumor detection and could be generalized to other pediatric and adult brain tumor diagnoses.”

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Cortisol/Cortisone Saliva Controls
MassCheck Chromsystems Saliva Controls

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.