Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

By LabMedica International staff writers
Posted on 19 Nov 2024

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. More...

Traditional imaging techniques like mammography often face challenges, particularly for women with dense breast tissue. Photoacoustic imaging, which uses a combination of light and sound to produce detailed images of breast tissue, presents a potential solution. However, recent research has identified a major issue: skin tone bias.

Researchers from Johns Hopkins University (Baltimore, MD, USA) conducted a study to assess how skin tone affects the visibility of breast cancer targets in photoacoustic imaging. Published in Biophotonics Discovery, the research evaluated three image reconstruction methods: fast Fourier transform (FFT)-based reconstruction, delay-and-sum (DAS) beamforming, and short-lag spatial coherence (SLSC) beamforming. The study involved simulations with various wavelengths (757, 800, and 1064 nm), target sizes (ranging from 0.5 to 3 mm), and skin tones (from very light to dark).

The findings revealed that traditional methods like FFT and DAS struggled to visualize small targets in darker skin tones, particularly at 757 and 800 nm wavelengths. Targets smaller than 3 mm were especially difficult to detect, with lower signal-to-noise ratios (SNR) and contrast-to-noise ratios (gCNR). In contrast, the 1064 nm wavelength showed notable improvements, particularly when paired with SLSC beamforming, enhancing the visibility of targets across all skin tones and providing clearer images with higher SNR and gCNR values.

The study findings offer promising implications for the future of breast cancer detection. By addressing the skin tone bias, photoacoustic imaging could become a more accurate and equitable tool for early diagnosis, benefiting women of all skin tones. The study highlights the importance of considering skin tone when designing next-generation imaging systems, ensuring more inclusive healthcare solutions.

“This work was motivated by a previously poor understanding of photoacoustic imaging performance under combined variations of small target sizes and darker skin tones,” said senior and corresponding author Muyinatu Bell. “Our results are enlightening, as we now have a better understanding of advanced photoacoustic imaging techniques and associated wavelengths necessary to detect small targets.”


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.