We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sensor Technology Detects Diabetes by Breath Analysis

By LabMedica International staff writers
Posted on 02 Jul 2013
A sensor technology could significantly simplify the diagnosis and monitoring of diabetes through breath analysis alone. More...


Physicians often recognize patients with diabetes through the condition's symptoms such as their characteristic breath of acetone, an odor that increases significantly with high glucose levels.

Chemists at the University of Pittsburgh (PA, USA) used a sol-gel approach, a method for using small molecules, often on a nanoscale level, to produce solid materials. The team combined titanium dioxide with carbon nanotubes, which acted as "skewers" to hold the particles together. These nanotubes were used because they are stronger than steel and smaller than any element of silicon-based electronics.

This method, which the scientists called "titanium dioxide on a stick," effectively combined the electrical properties of the tubes with the light-illuminating powers of the titanium dioxide. They then created the sensor device by using these materials as an electrical semiconductor, measuring its electrical resistance, which is the sensor's signal. They found the sensor could be activated with light to produce an electrical charge. This prompted them to expose the nanotubes in the sensor under ultraviolet light to measure acetone vapors, which they found were lower than previously reported sensitivities.

The authors concluded that the ultrahigh sensitivity to parts per million (ppm) level of acetone vapors, fast and reversible response, together with miniature size and room temperature operation makes this nanohybrid device a promising sensing platform that could find applications in the detection of breath acetone. The development of a micro-sized low-power electronic breath acetone-sensor device could further benefit personal healthcare by serving as a convenient and low-cost diagnostic tool for diabetes or a novel and high-throughput analytical method in the clinical studies of metabolic disorders.

Alexander Star, PhD, the lead author said, “Current monitoring devices are mostly based on blood glucose analysis, so the development of alternative devices that are noninvasive, inexpensive, and provide easy-to-use breath analysis could completely change the paradigm of self-monitoring diabetes. Our measurements have excellent detection capabilities. If such a sensor could be developed and commercialized, it could transform the way patients with diabetes monitor their glucose levels." The study was published on May 21, 2013, in the Journal of the American Chemical Society.

Related Links:
University of Pittsburgh



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.