We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanomechanical Sensors Detect Antibiotic Resistance

By LabMedica International staff writers
Posted on 18 Jul 2013
Print article
Image: Nano and laser technology measures antibiotic resistance (Photo courtesy of Alain Herzog).
Image: Nano and laser technology measures antibiotic resistance (Photo courtesy of Alain Herzog).
The fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, and quantitatively screen their response to antibiotics within minutes.

Current methods to find out if a bacterium is responding to antibiotic treatment, leave clinicians waiting for what happens when they try to grow it in a culture and for some types of bacteria, such as the one that causes tuberculosis (TB), this can take up to a month.

Scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland) developed extremely sensitive cantilevers that can pick up almost imperceptible atomic-level vibrations emitted by live bacteria. Live bacteria are engaged with metabolic activity, with a set of life-sustaining chemical reactions that goes on in living cells. The team used this metabolic activity that sends out the vibrations to see if they could detect it with their technology.

Placing the bacteria on or near the nano-sized tuning forks or cantilevers causes them to oscillate in response to the bacterial vibrations. The cantilevers are very small, with a nominal length of 205 μm and a nominal spring constant of 0.06 N/m, which allows for the calculation of the energy needed to produce nanometer deflections of this spring. By projecting a laser beam onto the cantilever and picking up how the light is reflected back, the scientists convert the oscillations into electrical signals that can be read easily. When the electrical signal is a flat line, it means there are no live bacteria, which is an effective way to find out very quickly whether treatment with an antibiotic has had the desired effect. This is especially useful for testing resistant strains.

In their set up the team studied two bacterial species, Escherichia coli and Staphylococcus aureus which were exposed to different concentrations of antibiotics and they also investigated a strain of E. coli that was sensitive to ampicillin. Exposure to antibiotics produced, in all cases, a rapid reduction in the fluctuations. The time needed to first detect a drop in their amplitude varied from five minutes to less than one minute, which a remarkably fast response.

The scientists have miniaturized their technology so it fits in a device the size of a matchbox, making it easily portable for clinical use. They suggest their nano-sized tuning forks could also be useful for testing response to chemotherapy treatment. They are currently looking at a way to use their nano-sized tuning forks to measure the metabolism of tumor cells that have been exposed to chemotherapy. Giovanni Dietler, PhD, a professor at EPFL, said, “This method is fast and accurate. And it can be a precious tool for both doctors looking for the right dosage of antibiotics and for scientists to determine which treatments are the most effective.” The study was published on June 30, 2013, in the journal Nature Nanotechnology.

Related Links:
Ecole Polytechnique Fédérale de Lausanne


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.