We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Multiplexed Protein Sensor Developed

By LabMedica International staff writers
Posted on 14 Aug 2013
Print article
Image: Plasmon nano optics (Photo courtesy of Johannes Gutenberg University).
Image: Plasmon nano optics (Photo courtesy of Johannes Gutenberg University).
A novel method has been developed for parallel protein analysis that is, in principle, capable of identifying hundreds or even thousands of different proteins.

The device is able to identify the specific proteins in the fluid and allows rapid and reliable differentiation between harmless microorganisms and dangerous pathogens.

Chemists at Johannes Gutenberg University (Mainz, Germany) have designed a sensor that is only of one-tenth of a square millimeter in area, but capable of performing a hundred different individual tests on that surface. The 'test strips' consist of glass capillary tubes that have gold nanoparticles as sensor elements on their internal surfaces. The test involves placing a tiny drop of blood, saliva, or other bodily fluid on a small test strip, which is then placed in the device.

The scientists used the simple and direct principle of plasmons in noble metal nanoparticles, which react to protein binding by a shift of the resonance wavelength. This is the target detection method for both the mapped and the unmapped sensors by monitoring individual nanoparticles by optical dark-field spectroscopy. The team used four different target proteins to demonstrate the viability of the concept, its ability to detect concentrations in the nanomolar range, and the possibility to recycle the sensors for more than one analysis.

The four proteins tested were thrombin, immunoglobulin E (IgE), streptavidin, and fibronectin. When a protein docks with one of these special DNA strands, called aptamers, the corresponding nanoparticle changes its color. The color changes can be detected with the aid of a spectrometer. For this purpose, the capillary tubes are placed under a microscope designed, constructed, and provided with the necessary software by the team of chemists. Low-cost serial production of the sensors is feasible if advanced nanofabrication methods such as nanoprinting or optical trapping are used.

Christina Rosman, DiplChem, first author of the study, said, “We have demonstrated a new approach for a multiplexed assay that detects multiple proteins simultaneously by letting a fluid flow past the randomly positioned gold nanorods. We see the potential to extend our method to the simultaneous detection of hundreds or even thousands of different target substances." There are manifold possible applications of a test for multiple targets in a single procedure. The low-cost sensors could be directly used by physicians in their practices in order to detect and discriminate various types of influenza viruses with which their patients could be infected. The study was published on June 21, 2013, in the journal Nano Letters.

Related Links:

Johannes Gutenberg University


New
Gold Member
LEISHMANIA Test
LEISHMANIA ELISA
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Refrigerated Centrifuge
CAPPRondo Refrigerated Centrifuge
New
HSV-1 Test
Herpes Simplex Virus 1 Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.