We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Detects Tumor Markers Using Laser-Stimulated Fluorescence

By LabMedica International staff writers
Posted on 09 Apr 2014
Print article
Image: The concentration of biological molecules in a sample can be observed visually using laser-stimulated fluorescence (Photo courtesy of Fraunhofer IPA).
Image: The concentration of biological molecules in a sample can be observed visually using laser-stimulated fluorescence (Photo courtesy of Fraunhofer IPA).
Tumor markers in the blood help determine whether the patient is afflicted with a malign tumor and whether it is excreting markers more vigorously involving highly specific proteins.

An increased concentration in the blood provides one indication of the disease for physicians, but it has been quite expensive in time and effort to detect the markers thus far and to be able to detect a single specific one, scientists must first separate and purify the blood in several steps and then isolate the marker.

Scientists at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Mannheim, Germany) have developed a one-step analysis to detect tumor biomarkers. The difficulty in detecting specific molecules in the blood or urine lies in the enormous number of substances that are mixed in the sample. They cause a high level of background noise that masks the desired signal and the signal from the protein being searched for can no longer be distinguished.

To improve the signal to noise ratio, the scientists used magnetic beads, which are particles only a few micrometers in size that have a magnetic core. If a magnet is positioned externally on the test tube, the beads can be arrested or steered. This technique is already in use. To isolate molecules from a solution like blood, the surface of the beads with were coated with specialized antibodies. The proteins that are being searched for wind past the beads, and the antibodies attach to them. If the magnet is held to the outside of the test tube, the beads together with the desired proteins stick to the interior surface of the tube, while the rest of the solution can be easily removed.

Additional means were developed with the samples exposed to the coated beads, but also to additional antibodies that have fluorescent markers bound to them. These antibodies attach themselves to the proteins being searched for and cause them to fluoresce. The optical signal is very weak though, and would normally disappear in the background noise. When using an alternating magnetic field, the magnetic beads flock together in rhythm, and the fluorescent markers bound to the surfaces emit their light in synchrony and radiate considerably more brightly than any given bead by itself. The advantage of this visualization technique is that the optical signal provides immediate insight about whether a tumor marker protein is present in the blood. The analysis equipment was presented at the Analytica international trade fair held April 1–4, 2014, in Munich (Germany).

Related Links:

Fraunhofer Institute for Manufacturing Engineering and Automation


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.