We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Noninvasive Method Captures Circulating Tumor Cells

By LabMedica International staff writers
Posted on 24 Jul 2014
Print article
Image:  The Becton Dickinson fluorescent activated cell sorter FACScan (Photo courtesy of the Albert Einstein College of Medicine).
Image: The Becton Dickinson fluorescent activated cell sorter FACScan (Photo courtesy of the Albert Einstein College of Medicine).
A clinically proven, noninvasive fluorescence virus-guided capture system of human colorectal circulating tumor cells (CTCs) from blood samples for genetic testing has been introduced.

This noninvasive companion diagnostics is important for personalized targeted cancer therapy because current CTC detection strategies mainly depend on epithelial cell-surface markers, and the presence of heterogeneous populations of CTCs with epithelial and/or mesenchymal characteristics may pose obstacles to the detection of CTCs.

Scientists at Okayama University (Japan) developed a new approach to capture live CTCs among millions of peripheral blood leukocytes using a green fluorescent protein (GFP)-expressing attenuated adenovirus, in which the telomerase promoter regulates viral replication. The team used different cell lines and a recombinant adenovirus.

Immunochemical staining was performed on cells seeded on tissue culture chamber slides. The cells were labelled with primary mouse antibodies for various receptors and were analyzed using single cell flow cytometry (FACS; Becton Dickinson, Mountain View, CA, USA). DNA was extracted from CTC models and clinical samples and gene mutation analysis was carried out by direct sequencing and the sequence of each gene was analyzed with an ABI PRISM 3100 Genetic Analyzer (Life Technologies; Carlsbad, CA, USA).

The blood samples obtained from eight patients with gene-mutated colorectal cancers were analyzed by the replication competent adenovirus OBP-401-based CTC capture system and by allele-specific blocker polymerase chain reaction (ASB-PCR) technology. In preliminary experiments, the number of GFP-positive cells at the P3 gate was less than 10 cells in some clinical blood samples and, therefore, they performed ASB-PCR analysis using GFP-positive cells at the P2 gate. Among the eight blood samples from patients with various stages of colorectal cancer, the same gene mutations as in the primary tumors were detected in the CTCs of two patients with advanced colorectal cancer.

The authors concluded that they have established a telomerase-dependent biological CTC capture system for genotyping of epithelial, mesenchymal, and epithelial-mesenchymal transition (EMT)-induced types of CTCs using telomerase-specific replication-competent adenovirus variant OBP-401 and fluorescent activated cell sorting (FACS) analysis. This technology facilitates the surveillance of genetic alterations in viable CTCs in patients with cancer. The study was published on July 8, 2014, in the journal Gut.

Related Links:

Okayama University
Becton Dickinson
Life Technologies


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.