We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lab-on-Paper Developed for Rapid Inexpensive Medical Diagnostics

By LabMedica International staff writers
Posted on 15 Mar 2015
Print article
Image: Schematics of the unique fluid transport property of the platform is demonstrated in the figure using dye-containing fluids (Photo courtesy of Labonachip LLC).
Image: Schematics of the unique fluid transport property of the platform is demonstrated in the figure using dye-containing fluids (Photo courtesy of Labonachip LLC).
A new paper-based platform has been created for conducting a wide range of complex medical diagnostics including Lyme disease, human immunodeficiency virus, Ebolavirus disease and malaria.

The key development was the invention of fluid actuated valves embedded in the paper that allow for sequential manipulation of sample fluids and multiple reagents in a controlled manner to perform complex multistep immune-detection tests without human intervention.

A team of engineers at the University of Rhode Island (URI; Kingston, RI, USA) used the principle of paper-based lateral flow test strips where sample fluid wicks along a strip of paper, reacts with embedded reagents, and produces a colored signal result. However, more complex medical diagnostics such as enzymatic assay protocols require multiple reagents triggered at particular times during the process, which can only be accomplished autonomously using the proprietary microfluidic valve technology created by the engineers.

The lab-on-paper devices are constructed with multiple layers of paper printed with wax to create a three-dimensional structure of valves and channels along which the fluid travels, triggering the reagents at the appropriate time and generating a result. This new paper-based technology is the next generation of the lab-on-a-chip device the team reported in 2011, which has been further refined since then. That device is now smaller and employs an innovative micropump for precise fluid movement within the cartridge's microchannels.

The scientists have already succeeded in performing a feasibility study of their technology by detecting a biomarker for sepsis, a life-threatening complication from an infection. ProThera Biologics (East Providence, RI, USA) identified a biomarker that indicates a patient is going into shock from sepsis, and the company has collaborated with the URI engineers to develop a paper-based rapid test using this biomarker, and have established a startup company, Labonachip LLC (North Kingstown, RI, USA) to commercialize their technologies.

Mohammad Faghri, PhD, a professor of Mechanical Engineering and Applied Mechanics, and inventor of the platform said, “We combined the well-established test strip technology, micro-patterning techniques and our innovative paper-based valves to create a new class of strip tests that are capable of autonomously handling multiple reagents. The sample fluid activates the flow of reagents in a predetermined sequence and time. When combined with an optical reader, which could even be a conventional smart phone, the lab-on-paper device provides accurate quantitative results.”

Related Links:

University of Rhode Island
ProThera Biologics
Labonachip LLC


Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.