We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lab-On-A-Chip Designed to Minimize Preterm Births

By LabMedica International staff writers
Posted on 25 Apr 2017
Print article
Image: Scientists loading the integrated electrokinetically driven microfluidic device with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers (Photo courtesy of Nate Edwards, Brigham Young University).
Image: Scientists loading the integrated electrokinetically driven microfluidic device with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers (Photo courtesy of Nate Edwards, Brigham Young University).
In the USA, a half million babies are born preterm; worldwide, the number is an estimated 15 million and complications associated with preterm birth are the number one cause of death for children under five, and those who live often face a range of health problems.

There presently are no known current biomarker-based diagnostics for preterm births, and doctors typically only pay attention to women who have other clear risk factors. However with the help from a palm-sized plastic rectangle doctors are hoping to minimize the problem of premature deliveries. The chip is designed to predict, with up to 90% accuracy, a woman's risk for a future preterm birth.

Scientists at Brigham Young University have developed a microfluidic device that uses pH-mediated solid phase extraction (SPE) for the enrichment and elution of preterm birth (PTB) biomarkers. Furthermore, this SPE module was integrated with microchip electrophoresis for combined enrichment and separation of multiple analytes, including a PTB peptide biomarker (P1). The team used a reversed-phase octyl methacrylate monolith that was polymerized as the SPE medium in polyethylene glycol diacrylate modified cyclic olefin copolymer microfluidic channels. Eluent for pH-mediated SPE of PTB biomarkers on the monolith was optimized using different pH values and ionic concentrations.

The scientists obtained a nearly 50-fold enrichment that was observed in single channel SPE devices for a low nanomolar solution of P1, with great elution time reproducibility. The monolith binding capacity was determined to be 400 pg (0.2 pmol). A mixture of a model peptide (FA) and a PTB biomarker (P1) was extracted, eluted, injected, and then separated by microchip electrophoresis in our integrated device with approximately 15-fold enrichment.

Adam T. Woolley, PhD, a chemistry professor and senior author of the study, said, “Among other benefits, the device is cheap, small and fast: once fully developed, it will help make detecting biomarkers a simple, automated task. Some peg the annual costs associated with preterm birth just in the USA at close to USD 30 billion, so one clear perk of such a screening tool, is economic. More significantly, there are a lot of preterm babies who don't survive: if we could get them to survive and thrive, it would be a huge gain to society.” The study was published on March 8, 2017, in the journal Electrophoresis.

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.