We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mass Spectrometry Detection for the Masses

By LabMedica International staff writers
Posted on 17 Jul 2017
Print article
Image: Research being conducted uses an atmospheric-pressure glow discharge plasma to probe samples for elemental and molecular species, and could lead to user-friendly MS analyses with broad capabilities (Photo courtesy of the Rensselaer Polytechnic Institute).
Image: Research being conducted uses an atmospheric-pressure glow discharge plasma to probe samples for elemental and molecular species, and could lead to user-friendly MS analyses with broad capabilities (Photo courtesy of the Rensselaer Polytechnic Institute).
Researchers are developing a plasma-based technology to enable generalized use of mass spectrometry (MS) with new instruments that can analyze a much broader range of molecular species than current technology allows.

Current MS instruments are bulky, expensive, and typically specialize in one class of chemicals, discouraging widespread use outside of a specialized lab setting. Better technology is needed to make more flexible instruments. Research being conducted at Rensselaer Polytechnic Institute (Troy, NY, USA) uses an atmospheric-pressure glow discharge plasma – a partially ionized gas that can be made stable at room temperature and pressure – to probe samples for elemental and molecular species, and could lead to user-friendly MS analyses with broad capabilities.

“Ideally we want one system that can detect everything, and we want to be able to take that system into the field to test materials on site,” said Prof. Jacob Shelley of Rensselaer Polytechnic, “We’re trying to make a more flexible instrument that will allow us to detect many things simultaneously.”

The hitch is that current instruments can only analyze molecules that are in gas state and ionized, which means that most samples must first be processed. Current MS relies on a variety of time-consuming processing methods that separate and ionize molecules prior to analysis. And depending on the method, samples (e.g. tissues, pharmaceuticals, or foods) may be destroyed during processing.

The biggest challenge to developing a generalized processing method is the chemistry needed to ionize the molecule. Most methods rely on specific chemistries that favor ionization of one class of molecules over another. Prof. Shelley team is developing a method that takes advantage of the unusual properties and chemistries of plasmas, which are rich in free-moving ions and electrons, and therefore highly interactive. Although the most commonly known plasmas are extremely hot (at nearly 10,000 degrees Kelvin, some plasmas rival the sun’s temperature), the team is working with more recently developed glow discharge plasmas that are stable at room temperature and atmospheric pressure.

In his lab, Prof. Shelley demonstrates an experimental instrument so benign it can test samples ionized from a fingertip, and so versatile it can detect molecular species from small amounts of metals to large labile biomolecules like peptides and proteins. In developing the technology, the team has used the instrument to detect counterfeit honey, to quantify harmful toxins in freshwater algal blooms, and to screen the raw materials used in nutritional supplements.

“The plasma is useful as an ionization source because it makes a diverse range of chemistries available,” said Prof. Shelley, “It may make it possible to ionize a broad class of molecules, which could lead to more generalized instruments.”

This research is enabled by the New Polytechnic vision, a transformative emerging paradigm for higher education, which recognizes that even the most talented person working alone cannot adequately address global challenges and opportunities. It helps Rensselaer serve as a crossroads for collaborations to address some of the world’s most pressing technological challenges.

Related Links:
Rensselaer Polytechnic Institute

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
New
Thyroid ELISA Kit
AESKULISA a-TPO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.