We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




NMR-Based Method Measures Circulating Blood Citrate Levels

By LabMedica International staff writers
Posted on 31 Mar 2021
Print article
Image: The Vantera Clinical Analyzer based on nuclear magnetic resonance (Photo courtesy of Liposcience)
Image: The Vantera Clinical Analyzer based on nuclear magnetic resonance (Photo courtesy of Liposcience)
Recent studies show that citrate is involved in several biological processes such as inflammation, cancer, insulin secretion, acetylation of histones, neurological development and hydroxylglutaric aciduria, indicating that it has functions beyond energy regulation.

Citrate associations with glaucoma, non-alcoholic fatty liver disease (NAFLD), bone disease and mortality have been observed. Monitoring circulating citrate could potentially be a diagnostic tool. While at present, urinary citrate is commonly used as a risk factor in kidney stone formation, serum/plasma citrate is scarcely utilized for disease diagnosis or prognosis.

Laboratorians at the Laboratory Corporation of America Holdings (Labcorp, Morrisville, NC, USA) took blood samples from volunteers in Greiner tubes allowed to clot (30 minutes) in an upright position and centrifuged (3,000 rpm, 10-15 minutes) immediately after clotting. Samples collected into plain red-top tubes and BD Gel Barrier serum tube (Becton Dickinson and Company, Franklin Lakes, NJ, USA) were held upright (red-top tubes for 45 minutes; BD Gel Barrier tubes for 30 minutes) at room temperature to clot and were promptly centrifuged.

Sample preparation (i.e., 1:1 (v/v) dilution of serum or plasma with phosphate buffer) was performed automatically on the Vantera Clinical Analyzer (Liposcience, Raleigh, NC). One-dimensional 1H NMR spectra were collected on a 400 MHz spectrometers at 47 °C. WET was used to suppress the water signal. The total acquisition time for each spectrum was 48 seconds. The NMR instruments are calibrated using 15 mM trimethyl acetic acid as a calibrator and reference standard to verify instrument performance on a daily basis. A restricted region of the collected spectrum, where the four citrate resonances appear, was used for quantification. To determine if the assay has adequate sensitivity to measure clinically relevant concentrations of citrate, the assay was used to quantify citrate in 533 apparently healthy adults, and in the general population (n=133,567).

The team reported that the limit of quantification (LOQ) for the assay was determined to be 1.48 mg/dL. Linearity was demonstrated over a wide range of concentrations (1.40 to 4.46 mg/dL). Coefficients of variation (%CV) for intra- and inter-assay precision ranged from 5.8-9.3 and 5.2-9.6%, respectively. Substances tested did not elicit interference with assay results. Specimen type comparison revealed <1% bias between serum and plasma samples, except for heparin plasma (3% bias). Stability was demonstrated up to eight days at room temperature and longer at lower temperatures. In a cohort of apparently healthy adults, the reference interval was <1.48 to 2.97 mg/dL. Slightly higher values were observed in the general population.

The authors concluded that the newly developed NMR-based assay exhibits analytical characteristics that allow the accurate quantification of clinically relevant citrate concentrations. The assay provides a simple and fast means to analyze samples for clinical and other studies. The study was published on March 18, 2021 in the journal Practical Laboratory Medicine.

Related Links:
Laboratory Corporation of America Holdings
Becton Dickinson and Company
Liposcience


New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
HSV-1 Test
Herpes Simplex Virus 1 Test
New
Celiac Disease Test
AESKULISA tTg-A New Generation

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.