We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

MERIDIAN BIOSCIENCE

Meridian Bioscience manufactures, markets, and distributes diagnostic test kits, purified reagents and biopharmaceuti... read more Featured Products: More products

Download Mobile App




Breath Test Determines Severity of Methylmalonic Acidemia Disease

By LabMedica International staff writers
Posted on 20 Apr 2021
Print article
Image: The BreathID Exalenz device (Photo courtesy of Meridian Bioscience)
Image: The BreathID Exalenz device (Photo courtesy of Meridian Bioscience)
Methylmalonic acidemia is a disorder in which the body cannot break down certain proteins and fats. The result is a buildup of a substance called methylmalonic acid in the blood. This condition is passed down through families and is one of several conditions called an "inborn error of metabolism."

Methylmalonic acidemia affects about 1 in 80,000 newborns and can lead to the buildup of proteins and fats by affecting their metabolism, and cause kidney, liver, and other disease. Methylmalonic acidemia is a genomic disorder that can be caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene.

A large team of medical genomic scientists at the National Human Genome Research Institute (Bethesda, MD, USA) developed a non-invasive test that gauges disease severity by measuring patients' metabolism though the levels of 1-13C-propionate in their breath. The team administered their test to 57 methylmalonic acidemia (MMA) patients and 16 healthy volunteers to find patients with severe subtypes of the disease had low propionate oxidation levels, while those with less severe disease or who had been treated with liver transplants had near-normal propionate oxidation levels.

Isotopomer enrichment (13CO2/12CO2) was measured in exhaled breath after an enteral bolus of sodium-1-13C-propionate, and normalized for CO2 production. 1-13C-propionate oxidation was then correlated with clinical, laboratory, and imaging parameters collected via a dedicated natural history protocol. Breath samples were collected via disposable breath collection kits (EasySampler Breath Test Kit, QuinTron, Santa Maria, CA, USA) prior to isotope administration, and at specified time points over two hours. A second method, utilizing the BreathID Exalenz device (Meridian Bioscience, Cincinnati, OH, USA) was also employed.

The scientists reported that Lower propionate oxidation was observed in patients with the severe mut0 and cblB subtypes of MMA, but was near normal in those with the cblA and mut forms of the disorder. Liver transplant recipients demonstrated complete restoration of 1-13C-propionate oxidation to control levels. 1-13C-propionate oxidation correlated with cognitive test result, growth indices, bone mineral density, renal function, and serum biomarkers. Test repeatability was robust in controls and in MMA subjects (mean coefficient of variation 6.9% and 12.8%, respectively), despite widely variable serum methylmalonic acid concentrations in the patients.

Charles P. Venditti, MD, PhD, the principal investigator and senior author of the study, said, “Our next goal is to see if this specialized breath test can detect increase in carbon 13 propionate oxidation after gene, mRNA, or genome editing therapies. This way, we can also use this test to measure how effective these treatments are in restoring MMUT function.”

The authors concluded that propionate oxidative capacity, as measured with 1-13C-propionate breath testing, predicts disease severity and clinical outcomes, and could be used to assess the therapeutic effects of liver-targeted genomic therapies for MMA and related disorders of propionate metabolism. The study was published on April 5, 2021 in the journal Genetics in Medicine.

Related Links:
National Human Genome Research Institute
QuinTron
Meridian Bioscience


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.