We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Spatial Tissue Profiled by Imaging-Free Molecular Tomography

By LabMedica International staff writers
Posted on 06 May 2021
Print article
Image: Schematic representation of sampling and reconstruction approach to resolve the spatial localization of genomics data (Photo courtesy of Swiss Federal Institute of Technology)
Image: Schematic representation of sampling and reconstruction approach to resolve the spatial localization of genomics data (Photo courtesy of Swiss Federal Institute of Technology)
Spatially resolved molecular atlases help scientists understand where different types of cells are located in the body and map their gene expression in specific locations in tissues and organs. However, many sequencing modalities lack spatial counterparts.

New technologies such as in situ hybridization can be used to map the expression of multiple genes on the same tissue sample and have accelerated the generation of new atlases. In situ hybridization allows for a target gene to be tagged ("hybridized") with a fluorescent marker within sections of a tissue ("in situ") and visualized under a specialized microscope. Several techniques are currently being developed for spatially resolved omics profiling, but each new method requires the setup of specific detection strategies or specialized instrumentation.

Life Scientists at the Swiss Federal Institute of Technology Lausanne (Lausanne, Switzerland) have created a computational algorithm called Tomographer that can transform gene-sequencing data into spatially resolved data such as images, without using a microscope. The framework uses a tissue sampling strategy based on multi-angle sectioning and an associated algorithm that enables the reconstruction of 2D spatial patterns.

The sampling technique involves cutting tissues into consecutive thin slices ("primary sections") that are subsequently further sliced along an orthogonal plane at predefined orientations ("secondary sections"), resulting in tissue strips spanning the entire tissue. Gene expression quantification of the sections is implemented using spatial transcriptomics by reoriented projections and sequencing (STRP-seq), a method that combines the sampling strategy presented above with a customized, low-input RNA-seq protocol based on single-cell tagged reverse transcription sequencing (STRT-seq) chemistry. The method produces parallel-slice projections for each gene by quantifying the reads that map to a transcript in each of the secondary sections.

The Tomographer framework was benchmarked for the ability to reconstruct transcriptome-wide spatial expression patterns against the Allen Adult Mouse Brain in situ hybridization atlas. First, the team measured 3,880 genes in the mouse brain. Then, they compared 923 reconstructed genes to the in situ hybridization data from the mouse brain atlas using Pearson's correlation coefficient and found that the Tomographer workflow was more than twice as accurate as iterative proportional fitting (IPF). They also compared Tomographer to the spatial reconstruction capabilities of IPF-based Tomo-seq.

The team noted that the quality of Tomographer's reconstructions depends on the balance between the number and width of the tissue strips sampled. They noted that four cutting angles provided results that are a fair compromise between the reconstruction quality and sample processing effort and cost. Also, the technique requires a distance of at least 1.15 times the secondary section width in order to discriminate between two distinct points of primary strips. The study was published on April 19, 2021 in the journal Nature Biotechnology.

Related Links:
Swiss Federal Institute of Technology

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.