We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Magnetic Needle Performs Less Invasive, More Precise Surgery and Diagnostic Tests

By LabMedica International staff writers
Posted on 25 Apr 2022
Print article
Image: MPACT-Needle (Photo courtesy of Johns Hopkins)
Image: MPACT-Needle (Photo courtesy of Johns Hopkins)

A tiny, untethered needle can enter the body through an incision no larger than a pin prick to perform biopsies, suture wounds, and even deliver cancer-fighting chemotherapy directly to tumors. Controlled by externally applied magnetics forces—no attached, guiding wires, or human or robotic hands—these miniscule tools promise a future of more precise, safer, and far less invasive surgery, experts say. However, as devices get smaller, so does their response to the magnetic forces that cause them to move and steer their course. Now, researchers have a solution: a surgical needle equipped with small magnets inside that, when stimulated by the externally applied forces, slip from one end of the needle to another, tapping against a rigid plate and supplying ample force to penetrate tissue.

In a study, a team of researchers at the Johns Hopkins Whiting School of Engineering (Baltimore, MD, USA) have demonstrated for the first time that untethered magnetic needles can be forceful enough to accomplish surgery. The researchers call their device the "Pulse Actuated Collisions for Tissue-penetrating Needle," or MPACT-Needle. For their experiments, the team connected a slender thread of suturing material to the needle, using a joystick connected to a computer to deliver commands that enabled the MPACT-Needle to perform surgical suturing on a sample rabbit cornea.

The team's next step is to develop better, more accurate motion-control algorithms equipped with imaging modalities to precisely control the movement of the device, making surgeries and procedures safer. The researchers believe that if the technology becomes successful, their new magnetic needles would make it possible to access hard-to-reach, delicate areas of the body, such as the bile duct, to deliver drugs directly to tumors, extract biopsy samples, or suture a wound rapidly and effectively to stem internal bleeding.

"These extremely small tools have the potential to revolutionize medicine, but as anyone who has played with magnets knows, size is important," said Axel Krieger, an assistant professor of mechanical engineering at Johns Hopkins Whiting School of Engineering. "The smaller the surgical tool, the less invasive the surgery, but also the weaker the device's response to magnetic force. One of the biggest challenges facing us is how to make sure that these mini-tools can be moved with enough force to penetrate tissue and do the job they are there to do."

"We proved that these tiny magnetic needles can have strong enough forces to perform delicate surgery with limited invasiveness," said study leader Onder Erin, a postdoctoral fellow in mechanical engineering at Johns Hopkins. "I can envision a time when our device will also be used to perform biopsies, and even deliver therapeutics and chemotherapy directly to tumors."

Related Links:
Johns Hopkins Whiting School of Engineering 

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Entamoeba One Step Card Test
CerTest Entamoeba
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.