We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Portable Optofluidic Sensing Devices Could Simultaneously Perform Variety of Medical Tests

By LabMedica International staff writers
Posted on 26 Jun 2023

While a variety of chip-based testing devices have been created, they primarily focus on one particular target or test due to the wide array of forms and quantities that biomolecules take. More...

For instance, proteins that serve as disease biomarkers can have concentrations differing by more than ten orders of magnitude. Now, scientists have utilized novel signal-processing methods on an optofluidic chip-based biosensor, enabling seamless fluorescence detection of a nanobead mixture spanning eight orders of magnitude in concentration, from attomolar to nanomolar. This extends the working concentration range of these sensors by over 10,000 times, paving the way for extremely sensitive portable integrated optofluidic sensors that can conduct various simultaneous medical tests, even if the tests involve different types of bioparticles—like viruses and DNA—in widely varying concentrations.

Researchers at University of California, Santa Cruz (UCSC, Santa Cruz, CA, USA) are developing a versatile testing platform based on optofluidic chips. These chips merge optics and microfluidic channels on a silicon or plastic chip, and detect particles by illuminating them with a laser beam and subsequently measuring the particle response with a light-sensitive detector. The researchers had previously demonstrated that their platform is capable of conducting various analyses and detecting a multitude of particle types, including nucleic acids, proteins, viruses, bacteria, and cancer biomarkers. However, until now, they employed separate detectors and signal analysis techniques to measure particles with high and low concentrations. This was necessary as a high concentration of one particle type could generate a large response that drowns out the smaller signals from other particles present in low concentrations.

In their latest research, the researchers devised signal-processing techniques that can simultaneously detect particles in both high and low concentrations, regardless of whether the concentrations are known in advance. To achieve this, they mixed different signal modulation frequencies: high-frequency laser modulation to single out particles at low concentrations, and low-frequency laser modulation to detect large signals from numerous particles at high concentrations. They also implemented a highly efficient algorithm they recently developed to identify single particle signals at low concentrations in real-time. Machine learning was beneficial in identifying signal patterns, enabling high-precision differentiation of various particle types. The team demonstrated their new signal analysis method by introducing optofluidic biosensor chips to a solution of nanobeads at varying concentrations and with different fluorescence colors. They were able to accurately determine the concentration of both yellow-green and crimson beads, even though their concentrations in the mixture varied by a factor exceeding 10,000.

“This work is our latest step in developing integrated optofluidic sensing devices that are sensitive enough to detect single biomolecules and work over a very wide range of concentrations,” said Holger Schmidt from the W.M. Keck Center for Nanoscale Optofluidics at the USCS who led the research. “We have shown that this can be done with a single method, which allows us to simultaneously measure and distinguish multiple particle types at once even if they have very different concentrations.”

“These signal analysis advances are ideal for enabling device operation at the point of care where signal quality can be poor and where data analysis is required in real time,” added Schmidt.

Related Links:
UCSC 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The Volition Nu.Q nucleosome assay runs on the IDS i10 automated analyzer platform (Photo courtesy of VolitionRx)

Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes

Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.