We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fluorescent Carbon Nanotubes Accurately Detect Bacteria and Viruses

By LabMedica International staff writers
Posted on 31 Jul 2023
Print article
Image: 3D printed model of a carbon nanotube (Photo courtesy of RUB)
Image: 3D printed model of a carbon nanotube (Photo courtesy of RUB)

An interdisciplinary research team that comprised scientists from Ruhr University Bochum (RUB, Bochum, Germany) has developed an innovative method to construct modular optical sensors capable of identifying viruses and bacteria. The team utilized fluorescent carbon nanotubes attached to a novel type of DNA anchors which serve as molecular handles. These anchor structures can be utilized to conjugate biological recognition units such as antibodies aptamers to the nanotubes, enabling interaction with bacterial or viral molecules. This interaction impacts the fluorescence of the nanotubes, causing their brightness levels to increase or decrease.

The research team utilized tubular nanosensors composed of carbon, each with a diameter of less than one nanometer. When irradiated with visible light, these nanotubes emit near-infrared light, a spectrum invisible to the human eye but ideal for optical applications due to the significant reduction of other signals within this range. Previously, the team had successfully manipulated the nanotubes' fluorescence to detect vital biomolecules. Their latest effort involved customizing carbon sensors for easy detection of various target molecules.

This breakthrough was achieved with the help of DNA structures with guanine quantum defects. This process involved linking DNA bases to the nanotube in order to introduce a defect into the nanotube's crystal structure. Consequently, the nanotubes' fluorescence underwent a quantum-level change. In addition, the defect functioned as a molecular handle, enabling the addition of a detection unit that could be adjusted to the respective target molecule to identify a specific viral or bacterial protein.

The team demonstrated the new sensor concept by targeting the SARS-CoV-2 spike protein. Researchers used aptamers that bind to the SARS-CoV-2 spike protein, following which the fluorescent sensors reliably indicated the protein's presence. Notably, the selectivity and stability of sensors featuring guanine quantum defects surpassed those of sensors without such defects, especially when in solution.

Related Links:
Ruhr University Bochum

Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
Echinococcus Granulosus Assay
Echinococcus Granulosus IgG ELISA
New
Silver Member
Epstein-Barr Virus Test
ReQuest EB VCA IgM ELISA Kit

Print article

Channels

Microbiology

view channel
Image: The test covers the most important bacterial pathogens across all age groups with a single cartridge (Photo courtesy of BHCS)

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Pathology

view channel
Image: The technique predicts how well some breast cancer patients will respond to chemotherapy (Photo courtesy of Shutterstock)

New Technique Predicts Tumor’s Responsiveness to Breast Cancer Treatment

Breast cancer is the most common cancer among women worldwide, with 2.3 million new cases diagnosed each year. In the era of personalized medicine, targeted therapies for different types of breast cancer... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.