We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible

By LabMedica International staff writers
Posted on 01 Dec 2023
Print article
Image: Made-to-order diagnostic tests may soon be on the horizon (Photo courtesy of McGill University)
Image: Made-to-order diagnostic tests may soon be on the horizon (Photo courtesy of McGill University)

Home testing gained significant importance during the COVID-19 pandemic, yet the availability of rapid tests is limited, and most of them can only drive one liquid across the strip, leading to continued reliance on centralized laboratory diagnostics. Now, a significant advancement has been achieved in diagnostic technology with the development of a 'lab on a chip' that can be created through 3D printing in just half an hour. This innovation holds the potential to make rapid, on-site testing widely accessible.

As part of a recent study, researchers at McGill University (Montreal, QC, Canada) have pioneered the development of capillaric chips, which essentially serve as miniaturized laboratories. In contrast to other computer microprocessors, these chips are designed for single use and do not need an external power source; they operate efficiently using just a paper strip. Their functionality is based on capillary action, the natural process that enables liquid to spontaneously move into an absorbent material, like a paper towel absorbing a spill on a table. Remarkably, these chips can be tailored through 3D printing for a variety of tests, including the quantification of COVID-19 antibodies.

This advancement brings the concept of 3D-printed home diagnostics closer to practical application, though challenges like obtaining regulatory approvals and securing the necessary testing materials still exist. The research team is committed to enhancing the accessibility of this technology, focusing on adapting it for use with more affordable 3D printers. innovation aims to accelerate diagnostic processes, improve patient care, and usher in a new era of convenient and accessible testing options.

“Traditional diagnostics require peripherals, while ours can circumvent them. Our diagnostics are a bit what the cell phone was to traditional desktop computers that required a separate monitor, keyboard and power supply to operate,” explained Prof. David Juncker, Chair of the Department of Biomedical Engineering at McGill and senior author on the study. “This advancement has the capacity to empower individuals, researchers, and industries to explore new possibilities and applications in a more cost-effective and user-friendly manner. This innovation also holds the potential to eventually empower health professionals with the ability to rapidly create tailored solutions for specific needs right at the point-of-care.”

Related Links:
McGill University

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.