We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples

By LabMedica International staff writers
Posted on 15 Dec 2023
Print article
Image: The self-heating microfluidic devices can help detect diseases without expensive lab equipment (Photo courtesy of MIT)
Image: The self-heating microfluidic devices can help detect diseases without expensive lab equipment (Photo courtesy of MIT)

Microfluidics, which are miniature devices that control the flow of liquids and facilitate chemical reactions, play a key role in disease detection from small samples of blood or other fluids. Commonly known examples include at-home Covid-19 test kits, which use basic microfluidic technology. However, more complex microfluidic applications often require chemical reactions at precise temperatures. Typically, these advanced devices are produced in clean rooms and include heating elements made of expensive materials like gold or platinum, making the manufacturing process costly and challenging to scale. Researchers have now made a breakthrough by employing 3D printing to build self-heating microfluidic devices, potentially paving the way for the creation of affordable and efficient tools that could detect various diseases.

Scientists at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) innovatively utilized multimaterial 3D printing to fabricate microfluidic devices with integrated heating elements. This development allows for precise temperature control of fluids moving through the device's microscopic channels. The method is highly customizable, enabling engineers to design microfluidics that heat fluids to specific temperatures or follow defined heating patterns in designated areas of the device. Remarkably, this cost-effective production method requires only about USD 2 worth of materials for each fully functional microfluidic device.

The dimensions of the device are comparable to a U.S. quarter, and its production is quick, taking only a few minutes. This advancement is particularly significant for remote or under-resourced areas in developing countries, where access to expensive laboratory equipment for diagnostic tests is often limited. Looking ahead, the researchers aim to incorporate magnets directly into the microfluidic devices. These embedded magnets could facilitate chemical reactions that require the sorting or aligning of particles. The researchers are also investigating alternative materials capable of achieving higher temperatures. This innovation in microfluidic technology represents a significant step towards more accessible and efficient diagnostic tools, especially in areas with limited resources.

“Clean rooms in particular, where you would usually make these devices, are incredibly expensive to build and to run,” said Luis Fernando Velásquez-García, a principal scientist in MIT’s Microsystems Technology Laboratories (MTL). “But we can make very capable self-heating microfluidic devices using additive manufacturing, and they can be made a lot faster and cheaper than with these traditional methods. This is really a way to democratize this technology.”

Related Links:
MIT

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Collection Container
Urine Monovette
New
Urine Drug Test
Instant-view Methadone Urine Drug Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.